For parts and accessories, service or repairs, call your authorized Central Boiler dealer or heating contractor. Record the information below for future reference.

<table>
<thead>
<tr>
<th>Model</th>
<th>Serial Number</th>
<th>Installation Date</th>
<th>Dealership Name</th>
<th>Phone Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>CL 4030</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CL 5036</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CL 6048</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CL 7260</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Owner Name

IN THE U.S., THIS APPLIANCE IS FOR NON-RESIDENTIAL APPLICATIONS ONLY

Save This Manual For Future Reference
p/n 9000808 REV.A
OUTDOOR WOOD FURNACE
BEST BURN PRACTICES

1. Read and follow all operating instructions supplied by the manufacturer.

2. FUEL USED: Only those listed fuels recommended by the manufacturer of your unit. Never use the following: trash, plastics, gasoline, rubber, naphtha, household garbage, material treated with petroleum products (particle board, railroad ties and pressure treated wood), leaves, paper products, and cardboard.

3. LOADING FUEL: For a more efficient burn, pay careful attention to loading times and amounts. Follow the manufacturer’s written instructions for recommended loading times and amounts.

4. STARTERS: Do not use lighter fluids, gasoline, or chemicals.

5. CHIMNEY RECOMMENDATIONS: In higher populated areas, extend the chimney to a height above the roofs of surrounding buildings.

6. Always remember to comply with all applicable state and local codes.

Be considerate of neighbors when operating your furnace. If you use your furnace in the summer months, be certain your chimney exhaust is not adversely affecting neighbors with open windows.

- Register at time of purchase for FREE 25 Year Limited Warranty -
Verify your warranty at
CentralBoiler.com/w25
Table of Contents

INTRODUCTION
- Labeling and Terminology .. 4
- Foreword ... 4

SECTION 1 – OUTDOOR FURNACE INSTALLATION...
- Planning the Location ... 7
- Installation Precautions ... 7
- Chimney Height and Reinforcement................................. 7
- Chimney Section Installation and Chimney Brace Assembly 8
- General Installation Information 9
- Foundation .. 9
- Potable Water .. 9
- MolyArmor 350 .. 10
- Shut-Off Valves .. 10
- Ground Rod Kit .. 10
- Supply and Return Lines .. 10
- Temporary Above Ground or Winter Installations 11
- Digging the Trench .. 11
- Underground Electric Wire ... 11
- Connecting to Existing Heating System 11
- Auxiliary Burner ... 12
- Installing Fuel Tank & Gas Piping 12
- Circulation Pumps .. 12
- Water Flow .. 12
- Access to Ports on Outdoor Furnace 12
- Installing Circulation Pumps ... 14
- Shut-Off Valves .. 15
- Filters .. 15
- Optional Thermostatic Valves ... 15
- Purging Air from the System - Manual Air Bleeders 17
- Water Heater Installation .. 17
- Existing Forced Air Installation 18
- Thermostatic Controls .. 21
- Heating Multiple Zones or Buildings 22
- Hydronic Installations ... 23
- Pressurized Water System Installations 24
- Water-to-Water Heat Transfer System 24
- Vented System Installation ... 25
- Direct Circulation Baseboard Installation 26
- Radiant Floor System Installations 27
- Pool and/or Hot Tub Heating ... 30
- Finalizing the Installation ... 31

SECTION 2 – OPERATING INSTRUCTIONS
- Wood Selection and Preparation 36
- Firing the Furnace ... 36
- Filling the Firebox ... 37
- Cleaning and Inspecting ... 37
- Control Locations .. 38
- Adjusting Water Temperature 38
- Modes Of Operation ... 39
- Operating Optional Burner ... 39

SECTION 3 – MAINTENANCE INSTRUCTIONS
- Routine Maintenance ... 40
- Water Quality and Maintenance 43
- Titanium Series Models - Water Samples 43
- Water Sample Kit .. 43
- When to Submit Water Sample 43
- System Maintenance .. 43
- Water Test Kits and Test Results 43
- Post Heating Season Maintenance 44
- Flushing the System ... 44

SECTION 4 – OWNER SERVICEABLE ITEMS
- Firebox Door Cam Loc Adjustment 45
- Firebox Door Seal Rope .. 45
- Light Bulb ... 45
- Solenoid ... 45
- Temperature Controller .. 46
- Water Temperature Sensor ... 47

SECTION 5 – TROUBLESHOOTING

SECTION 6 – GENERAL INFORMATION
- Parts Listing, CL 4030 DF .. 51
- Parts Listing, CL 5036 DF .. 52
- Parts Listing, CL 6048 DF .. 53
- Parts Listing, CL 7260 .. 54
- Furnace Measurements .. 55
- Wiring Diagrams ... 56
Labeling and Terminology
The outdoor furnace and this owner's manual use the following terms and symbols to bring attention to the presence of hazards of various risk levels and important information concerning the use and maintenance of the outdoor furnace.

DANGER: Indicates an imminently hazardous situation which, if not avoided, will result in death or serious injury.

WARNING: Indicates presence of a hazard which can cause severe personal injury, death, or substantial property damage if ignored.

CAUTION: Indicates presence of a hazard which can cause minor personal injury or property damage if ignored.

NOTE: Indicates supplementary information worthy of particular attention relating to installation, operation, or maintenance of the outdoor furnace but is not related to a hazardous condition.

Be sure to follow all instructions and related precautions as they are meant for your safety and protection. Store this manual in a readily accessible location for future reference.

Foreword
This manual and the accompanying gas or fuel oil burner Operator's Manual (if the furnace is supplied with a burner) are to be used as a guideline for installation, operation, and maintenance of the Classic Dual Fuel Outdoor Wood Furnace. This manual is organized into six sections for easy reference.

- Section 1 – Outdoor Furnace Installation;
- Section 2 – Operating Instructions;
- Section 3 – Maintenance Instructions;
- Section 4 – Owner Serviceable Items;
- Section 5 – Troubleshooting;
- Section 6 – General Information.

Anyone owning or operating this outdoor furnace must read, fully understand, and follow all of the information in this manual and the accompanying gas or fuel oil burner Operator's Manual.

NOTE: In higher populated areas, extend the chimney to a height above the roofs of surrounding buildings (see Outdoor Wood Furnace Best Burn Practices illustration, inside front cover).

NOTE: The outdoor furnace may be connected to an existing boiler system or hot water heating system by a qualified installer only. However, the outdoor furnace must not be pressurized.

EPA RESOURCES

EPA's Burnwise Program - http://www.epa.gov/burnwise

How to Use a Moisture Meter Video - http://www.youtube.com/watch?v=jM2WGgRcnm0

EPA offers tips on how to properly use a moisture meter to test firewood before using in a wood-burning stove or fireplace. Wet wood can create excessive smoke which is wasted fuel.

Split, Stack, Cover and Store Video - http://www.youtube.com/watch?v=yo1--Zrh11s

EPA offers four simple steps to properly dry firewood before using in a wood-burning stove or fireplace. Wet wood can create excessive smoke which is wasted fuel. Burning dry, seasoned firewood with a moisture content of 20% or less can save money and help reduce harmful air pollution.

Wet Wood is a Waste brochure - http://www.epa.gov/burnwise/pdfs/wetwoodwastebrochure.pdf

This tri-fold brochure provides colorful illustrations of the four easy steps to dry firewood.

NOTE: The warranty can be voided by operating a hydronic heater in a manner inconsistent with the owner's manual.
IMPORTANT PRECAUTIONARY INFORMATION

The information contained on pages 5-6 appears throughout this manual. Be sure to read carefully and understand these precautions before, during and after the installation, operation and maintenance of the outdoor furnace.

CAUTION

This outdoor furnace is not intended to be the only source of heat. Should the outdoor furnace be left unattended, run out of fuel or require service, an alternate heating source in the building being heated should be in place to prevent damage caused by freezing.

WARNING

Outdoor furnace vent cap must fit loosely on the vent opening (Fig. 1). Do not force the cap down or try to seal it tightly onto the vent pipe. Do not extend or restrict the vent pipe or opening. DO NOT ALLOW THE OUTDOOR FURNACE TO BE PRESSURIZED.

Fig. 1

WARNING

Be sure the outdoor furnace is filled with water before firing. Never fire the outdoor furnace when the water level is more than 1” below the FULL mark on the sight gauge. MolyArmor 350 Corrosion Inhibitor must be added before the initial fill (see Water Quality and Maintenance).

WARNING

The Classic Outdoor Wood Furnace is not intended or certified to be installed inside a building.

WARNING

This outdoor wood furnace and/or chimney must not be installed inside or under any configuration or construction that contains combustible materials as part of the structure or configuration. The chimney is not intended or safety tested to be used or installed other than on the furnace located outside of any structure or enclosure.

WARNING

Disconnect the electrical power to the outdoor furnace before replacing an electrical component.

WARNING

Allow the outdoor furnace to thoroughly cool and completely clean out the firebox before draining water from the outdoor furnace. If the water in the outdoor furnace ever boils, be sure to check the water level and restore to full. If water is added, the proper level of MolyArmor 350 Corrosion Inhibitor must be maintained.

WARNING

When cleaning the outdoor furnace and reloading the firebox, be careful not to spill any coals.

WARNING

ALWAYS store ashes in a covered non-combustible container.

WARNING

When installing a heat exchanger on an existing hot water boiler, be sure none of the existing system safety controls are disabled.

NOTE: Any changes to an existing boiler and/or system should be done by a qualified installer in accordance with applicable codes.

WARNING

Do not attempt service inside the electrical control panel without first disconnecting the electrical power at the main power source.

NOTE: Any electrical installation should be done by a qualified installer in accordance with applicable codes.

WARNING

Do not allow combustible materials (straw, hay or wood) near the outdoor furnace. Keep the perimeter of the outdoor furnace clear and clean.

NOTE: All installations and operations must be in accordance with local and state codes which may differ from the information in this manual.
IMPORTANT PRECAUTIONARY INFORMATION

The information contained on pages 5-6 appears throughout this manual. Be sure to read carefully and understand these precautions before, during and after the installation, operation and maintenance of the outdoor furnace.

WARNING
Maintain the following clearances from combustibles for the furnace installation:
• 18” from the back
• 6” from the sides
• 48” from the front
• 18” from the chimney inspection cover
• The foundation must be noncombustible

WARNING
For fire safety, keep all combustible materials at least six feet away from the outdoor furnace, especially around the door area. Debris of wood chips and other combustibles in the loading area may be easily ignited if a hot coal is spilled out of the firebox and left unnoticed.

WARNING
The firebox door must be closed and latched at all times except when filling the firebox with wood. Leaving the firebox door open may lead to a runaway fire. In the event of a runaway fire, close the firebox door.

WARNING
All covers must be maintained at all times except during maintenance, inspection and service.

WARNING
Use only untreated wood in the firebox. Do not burn garbage, gasoline, rubber, engine oil, naptha, plastics, treated wood or combustibles other than wood.

NOTE: Chloride or sulfurous gases can be generated if plastic or rubber is burned and will mix with the moisture from the wood and form sulfuric or hydrochloric acids in the firebox, creating excessive corrosion.

NOTE: Do not use chemicals or fluids to start the fire. Use kindling and a small amount of paper to start an initial fire.

NOTE: This outdoor furnace is not to be used with an automatic stoker.

WARNING
When adding wood to the firebox, be careful not to get pinched between the wood and the door frame, or any part of the outdoor furnace. Use extreme care with large pieces of wood that may be difficult to handle.

NOTE: The sight gauge valve should always be closed, except when checking water level. Water will automatically drain from the sight gauge tube when the valve is closed. Remember that this type of valve requires only 1/4 turn to open or close.

NOTE: A 40-watt appliance light bulb is recommended if replacement is necessary. Do not install a bulb in excess of 60 watts.

NOTE: In case of a power outage, either a generator or 12V battery with a power inverter can be used to provide electricity to operate the outdoor furnace.
To ensure the outdoor furnace functions as designed, careful planning and proper installation are imperative. This section outlines much of the information needed to install the outdoor furnace, select water lines, install circulation pumps and connect to your existing heating system.

Be sure to read carefully and observe all of the information, not only in this section, but in the entire owner's manual.

If any installation questions arise that cannot be answered by the information in this manual, be sure to contact your dealer.

PLANNING THE LOCATION
When selecting a suitable location, carefully consider each of the following:

- Must be installed in accordance to all applicable codes and regulations.
- Check with your insurance company to see if they have any location requirements.
- Consider prevailing winds and the direction smoke will travel.
- The shorter the distance between the outdoor furnace and building(s) being heated, the lower the cost will be for the installation of the insulated hot supply and return water lines.
- Be sure to maintain the required clearances to combustibles and recommended maintenance clearances.
- ThermoPEX pre-insulated piping is recommended for all installations. Other types of piping should not be buried in low-lying areas with standing water or with a very high water table, or under an area of heavy vehicle traffic unless protected from excessive compression.
- If the ground at the location is unstable or subject to frost heaving, consider installing 2" closed-cell insulation beneath the front portion of the slab and the area around the slab used for walking.

INSTALLATIONS IN MASSACHUSETTS:
1. All installation components must be products approved in the Commonwealth of Massachusetts by the Gas and Plumbing Board.
2. The maximum run of tubing from the water heater to a fan coil is 50 linear feet.
3. Persons operating this hydronic heater are responsible for operation of the hydronic heater so as not to cause a condition of air pollution as defined in 310 CMR 7.01(1).

INSTALLATION PRECAUTIONS
A qualified installer must perform the installation of this supplementary outdoor furnace and must determine how to install it to be compatible with the existing heating source.

CHIMNEY HEIGHT AND REINFORCEMENT RECOMMENDATIONS
In higher populated areas, extend the chimney to a height above the roofs of surrounding buildings. Use Central Boiler Chimney Extensions when extending the chimney. Each extension section must be secured at the connection joint with four (4) screws or a band clamp to stabilize the extension.

If extensions are added to the standard eight feet of chimney (12 feet is standard for the CL 7260), the chimney should be reinforced appropriately. When adding sections of chimney, make sure that there is nothing within the fall zone of the chimney that could be damaged. If something is located within the fall zone and cannot be removed, guy wires or braces may need to be installed to prevent a falling chimney from causing damage. See Fig. 2 and 3 for chimney reinforcement recommendations.

NOTE: If more than three 4-foot sections of chimney are used, a support (e.g., a pole, pipe or other structural support) may be installed from the ground that can withstand wind. Other reinforcement recommendations are shown in Fig. 3.

Fig. 2

NOTE: For chimney extensions or chimney replacement, use only genuine Central Boiler chimney components. Parts are available from an authorized Central Boiler dealer.
The installation of a spark arrester is recommended, particularly where there are dry conditions or where there is combustible material near the unit, unless the installation of a spark arrester is prohibited by local requirements.

Use common sense to avoid potential fires, including exercising caution when disposing of ashes, cleaning and refueling. Keep all highly combustible materials (e.g., gasoline, propane, leaves, pine needles, etc.) away from an operating unit at all times. Take special precautions in windy conditions.
GENERAL INSTALLATION INFORMATION

Foundation
For all models except the CL 7260, the outdoor furnace may be installed directly on stable, level ground without the necessity of a foundation. The CL 7260 must be installed on a concrete foundation.

If the ground is unstable, one option is to use patio blocks under the perimeter of the base. Another option is to pour a concrete foundation.

To install the furnace on a concrete foundation, refer to Fig. 4 for dimensions and for the location of the hollowed-out area for each model. A 4" to 6" thick concrete slab works well; however, a thicker slab may be used to obtain the desired door opening height.

If the area for the concrete slab is unstable and/or affected by frost heaving, consider installing 2" closed-cell insulation beneath the front portion of the slab and under the area of the ground used for walking.

Potable Water
If the outdoor furnace is to heat potable water associated with commercial food preparation or for heating milkhouse hot water, it is recommended to install a double-wall heat exchanger. Also, when filling the system with water, a backflow preventer must be installed in the line used for filling.

Adding Antifreeze to Outdoor Furnace System
Most outdoor furnaces are installed without antifreeze when an existing heating system is in place and there is no anticipation of leaving the outdoor furnace unattended for extended periods of time (10 days or more). If the building being heated has an alternate heat source, system water may be kept from freezing by running the circulating pump(s) and drawing heat from the existing furnace or boiler in the home or building.

Adding antifreeze to the system, it is imperative that the entire system contain at least 30% antifreeze concentration mixed with softened, reverse osmosis or deionized water to prevent bacterial growth and minimize minerals in the system. Bacterial growth is likely to occur with low antifreeze concentrations and can cause corrosion in the furnace water jacket and/or clogging of heat exchangers. To confirm the antifreeze solution is adequate and to kill bacteria, immediately heat the system up to 185˚ F, allow the pumps to circulate for at least 24 hours and then obtain a sample of the system water. Using an antifreeze tester, the solution must be protected to 10˚F (-12˚C) or below.

NOTE: If using antifreeze, test the pH and Moly levels once each month. If the bacterial issues occur, the pH will decrease.

NOTE: Be sure to adhere to all warnings and precautions on the antifreeze label.

NOTE: Do not use automotive or RV types of antifreeze.

NOTE: If using antifreeze, see Water Quality and Maintenance in your Owner’s Manual.

NOTE: The installation surface or foundation must be noncombustible. The hot supply and return lines must also be protected from possible exposure to sunlight, fire or physical damage. Foundations may consist of concrete, crushed rock or patio blocks.

Fig. 4

Foundation Dimensions

CL 7260 and Pallet Burner

CL 6048***

Front 73"

CL 5036***

Front 63"

CL 4030***

Front 53"

CAUTION

Do not use any combustible materials for the foundation.

Outdoor furnace must be installed on a noncombustible surface or foundation that incorporates an enclosure that will prevent supply and return lines from possible exposure to sunlight, fire, or physical damage that may be caused by an occurrence outside the outdoor furnace enclosure. Foundation may consist of concrete, crushed rock, or patio blocks.
MolyArmor 350
MolyArmor 350 Corrosion Inhibitor gives optimum protection for the furnace water jacket and system parts when it is used to initially treat the water and is maintained at a minimum of 350 ppm of moly and pH level between 8.0 and 9.5.

MolyArmor 350 is composed of common materials. Molybdenum compounds are characterized as nontoxic in US Public Health Bulletin 293, by the Federal Hazardous Substances Labeling Act, and by the Occupational Safety and Health Act. However, in keeping with good safety and environmental practices, dispose furnace water in accordance with federal, state and local regulations.

- Unless regulation prohibits, you may drain the outdoor furnace to a home septic system. If doing so, however, be careful not to overflow the septic system.
- Do not drain the outdoor furnace in such a manner that the drain water could in any way contact surface water, stream, river, estuary (where a river meets a sea), lake, pond, ocean or other types of waters.
- Do not drain to any location within 50 feet (15 meters) of any water well.

Shut-Off Valves
Shut-off valves must be installed on each hot supply and return water line so each line can be shut off individually for purging air from the system. Be sure all valves and fittings are metal. Do not use plastic valves or fittings.

Ground Rod Kit
The outdoor furnace must be electrically bonded to ground in accordance with the requirements of the authority having jurisdiction or, in absence of such requirements, with the National Electrical Code, ANSI/NFPA 70 and/or the Canadian Electrical Code Part 1, CSA C22.1 Electrical Code.

Install a Ground Rod Kit (p/n 6593) and connect it to the outdoor furnace.

1. In the water line trench near the outdoor furnace, drive the ground rod into the ground until the top of the ground rod is below the ground surface.

2. Route the ground wire from the ground rod under the outdoor furnace base and over to either a vertical brace or the frame of the outdoor furnace.

NOTE: On some models, a 1/4" hole for the ground terminal has been pre-drilled in the outdoor furnace base. Check to see if there is an existing 1/4" hole before drilling the hole in Step 3.

3. Drill a 1/4" hole in the brace; then secure the ground terminal with a cap screw (1/4" x 20" x 3/4"), star washer and nut. Secure the ground wire to the terminal; then secure the ground wire to the ground rod with the clamp. Tighten all hardware securely.

SUPPLY AND RETURN LINES
Determine the configuration of the supply and return lines from the outdoor furnace to where the supply and return lines will connect to the existing heating system. Central Boiler recommends using the ThermoPEX® piping system.

ThermoPEX is a fully assembled, pre-insulated piping system consisting of two 1" Central PEX lines or two 1-1/4" PEX lines. The two lines (one a supply and one a return line) are insulated with high-density urethane insulation and a thick, durable, waterproof, polyethylene outer jacket. One of the lines is marked with a black stripe for identification.

NOTE: To prevent ground water from entering the building, do not use drain tile, PVC pipe with bubble wrap, or any other inferior material for insulating the water lines.

NOTE: If the outdoor furnace supply and return lines are not insulated properly, or if other brands of insulated piping are used, there can be excessive heat loss. This heat loss can greatly increase the fuel consumption.

NOTE: If it is unavoidable that the trench will run through an area of ponding water, use ThermoPEX instead of other materials. ThermoPEX should also be used for above-ground or winter installations, and if the area is likely to be affected by compaction.
Temporary Above Ground or Winter Installations
For temporary above ground or winter installations in which the supply and return lines can not immediately be buried underground, Central Boiler recommends using ThermoPEX. Be sure that both the insulation and the supply and return lines will not be exposed to ultraviolet rays. The ThermoPEX black exterior jacket has UV protection but the insulation and water lines inside do not. Use a ThermoPEX termination cap at each end of the installation to protect and seal the insulation from water.

NOTE: Bury the ThermoPEX as soon as conditions permit (e.g., once the ground has thawed).

NOTE: If ThermoPEX is installed temporarily above ground, provisions should be made to prevent possible risk of fire coming into contact with the ThermoPEX. ThermoPEX is constructed of materials that can burn and transfer a fire.

CAUTION
If ThermoPEX is installed temporarily above ground, do not cover with combustible materials (e.g., stray, hay, leaves, etc.).

Digging the Trench
WARNING
Before digging, be sure to call for utility locator service.

The trench depth for ThermoPEX should be between 10" and 28" (25 and 71 cm).

Fig. 6

Underground Electric Wire
A 14-2 (two wires plus ground) underground rated wire should supply the outdoor furnace with electricity. A heavier gauge wire may be needed if the run is over 200 feet (61 meters). Check local codes and requirements. It is recommended that the incoming fuse or circuit breaker not exceed 15 amps.

Connecting to Existing Heating System
1. Make an entrance into the building(s) where the supply and return lines are to enter.
2. Lay the ThermoPEX assembly in the trench and feed one end into the building. Apply sealant around the supply and return lines where they enter the building.
3. Purge the supply and return lines before connecting any fittings to ensure there is no debris or foreign matter present.

NOTE: All holes made in basement or building walls must be sealed completely to prevent water from entering the building.

4. Close all valves on the outdoor furnace.
5. Install fittings to allow pressure-testing of both supply and return lines. Pressurize with 50 psi (3.5 kg/cm^2) of air; then check after 30 minutes to see if pressure has dropped. A drop in pressure indicates a leak; repair as necessary.
6. Connect the supply and return lines to the outdoor furnace and the existing heat emitter(s). Fig. 7 shows some of the PEX fittings and tools used in making connections.

Fig. 7

PEX Fittings and Tools
- Stainless Steel Clamp/Crimp Ring
- Cinch Tool
- PEX Crimp Ring Tool
- PEX Brass Clamp Fittings
- Wrench or Socket
- Stainless Steel 1" Hose Clamp
- Wrench or Socket
- Push Fit Fittings
- No Tool Required
CAUTION

Allow for expansion and contraction of the supply and return lines at each end. Without an allowance for expansion and contraction, the lines may kink or the fittings may be pulled apart, causing an immediate water loss from the outdoor furnace. Central PEX water lines can have an expansion and contraction rate up to .095" per each 100 ft and each 10°F (2.4 mm/30 m/5.5˚C).

7. Make sure there are no leaks in the supply and return lines; then backfill the trench.

NOTE: Do not backfill the trench until the supply and return lines have been tested to ensure there are no leaks.

8. Install the base trim; then, using gravel or small rock, backfill the perimeter of the ThermoPEX line enclosure to the bottom, inner edge of the base (Fig. 8). Install the siding panel.

Fig. 8

Gravel or Small Rock

AUXILIARY BURNER

The auxiliary burner must be installed by a qualified installer in accordance with local and state and applicable national codes. Where required by the authority having jurisdiction, the installation must conform to the Standard for Controls and Safety Devices for Automatically Fired Boilers, ANSI/ASME CSD-1.

Each optional burner is accompanied by Central Boiler instructions and the manufacturer's instructions which provide the information for proper installation, setup, adjustment and service.

Upon completion of the installation, the entire installation must be inspected and all safety shutoff devices tested according to the manufacturer's instructions.

INSTALLING FUEL TANK & GAS PIPING

If installing a fuel tank, it must be installed by a qualified installer familiar with all regulations and must conform to the authorities having jurisdiction, or in the absence of such requirements, with the NFPA 31, the National Fuel Gas Code ANSI Z223. or CAN/CGA B149.

All gas piping must conform to the authorities having jurisdiction, or in the absence of such requirements, with the National Fuel Gas Code ANSI Z223.1 or CAN/CGA B149. The line should be dug in underground to the outdoor furnace and supported to the burner appropriately.

The pipings should be installed and tested for leaks by a qualified installer familiar with all regulations.

CIRCULATION PUMPS

NOTE: The direction of water flow is very important for the proper operation of the outdoor furnace. Installing a swing check valve in the return line can prevent possible reverse flow.

Water Flow

For a single building water-to-air heat exchanger system with a domestic water heater, the direction of water flow must go from the hot outlet on the outdoor furnace to the lower side fitting of the domestic water heater exchanger, to the lower fitting of the heat exchanger in the plenum of the existing furnace, and then to the return port of the outdoor furnace.

NOTE: Some systems may have different flow patterns.

Access to Ports on Outdoor Furnace

The upper ports are the hot supply outlets and the lower ports are the return inlets. This configuration allows for mounting the circulation pumps on the outdoor furnace. Fig. 9 through Fig. 13 show different configurations for proper supply and return line and pump installations.

The Taco 009 is a medium flow, high head pressure pump that requires an adequate amount of pressure on the outlet side to prevent the motor from overloading.

The Taco 014 is a high flow, high head pressure pump that requires an adequate amount of head pressure on the inlet side to prevent cavitation. Therefore, a Taco 014 may need to be mounted lower near the base of the furnace, and on the 1-1/4" bung.

The Taco 007 is a medium to high flow, low head pressure pump. In a very low-resistance system (e.g., short length of supply and return lines, only a flat plate heat exchanger, etc.), the 007 pump may need to be mounted lower near the base of the furnace or on the 1-1/4" bung to prevent cavitation at high water temperatures.

NOTE: See the Hydronic Component Selection Guide (p/n 2482) for more information.
1 - Pump Configuration (Taco 007)

Fig. 9

- Use a 1/2" x 1/8" bushing with temperature gauges.

3-Pump Configuration (Taco 007 & Taco 014)

Fig. 12

Install 014 pumps lower to increase inlet pressure to prevent cavitation.

1 - Pump and 3- Pump Parts List (Taco 007)

Fig. 11

<table>
<thead>
<tr>
<th>Qty</th>
<th>p/n</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>118</td>
<td>3/4" Close Nipple</td>
</tr>
<tr>
<td>1</td>
<td>171</td>
<td>007 Pump</td>
</tr>
<tr>
<td>2</td>
<td>198</td>
<td>3/4" Ball Valve</td>
</tr>
<tr>
<td>2</td>
<td>224</td>
<td>3/4" Isolation Flange Kits</td>
</tr>
<tr>
<td>1</td>
<td>296</td>
<td>3/4" Swing Check Valve</td>
</tr>
<tr>
<td>1</td>
<td>526</td>
<td>Power Supply Cord, 32"</td>
</tr>
<tr>
<td>2</td>
<td>1330</td>
<td>3/4" x 1" MPT to PEX</td>
</tr>
<tr>
<td>2</td>
<td>3042</td>
<td>1/2" x 1/8" Bushing</td>
</tr>
<tr>
<td>1</td>
<td>6054</td>
<td>Temperature Gauge</td>
</tr>
<tr>
<td>1</td>
<td>6593</td>
<td>Grounding Rod Kit</td>
</tr>
</tbody>
</table>

Parts and accessories sold separately. Pump size may vary.

1 - Pump Parts List

For illustration purposes only.

<table>
<thead>
<tr>
<th>Qty</th>
<th>p/n</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>118</td>
<td>3/4" Close Nipple</td>
</tr>
<tr>
<td>1</td>
<td>171</td>
<td>007 Pump</td>
</tr>
<tr>
<td>2</td>
<td>198</td>
<td>3/4" Ball Valve</td>
</tr>
<tr>
<td>2</td>
<td>224</td>
<td>3/4" Isolation Flange Kits</td>
</tr>
<tr>
<td>2</td>
<td>274</td>
<td>3/4" Black 90° Street Elbow</td>
</tr>
<tr>
<td>2</td>
<td>296</td>
<td>3/4" Swing Check Valve</td>
</tr>
<tr>
<td>1</td>
<td>388</td>
<td>1-1/4" x 3/4" Bushing</td>
</tr>
<tr>
<td>1</td>
<td>534</td>
<td>3/4" x 7" Nipple</td>
</tr>
<tr>
<td>1</td>
<td>556</td>
<td>Power Supply Cord, 32"</td>
</tr>
<tr>
<td>1</td>
<td>582</td>
<td>6 Outlet Converter</td>
</tr>
<tr>
<td>2</td>
<td>588</td>
<td>3/4" x 1" MPT to PEX</td>
</tr>
<tr>
<td>1</td>
<td>5926</td>
<td>Power Supply Cord, 32"</td>
</tr>
<tr>
<td>1</td>
<td>6054</td>
<td>Temperature Gauge</td>
</tr>
<tr>
<td>1</td>
<td>6593</td>
<td>Grounding Rod Kit</td>
</tr>
<tr>
<td>2</td>
<td>6764</td>
<td>3/4" x 3/4" x 1/2" Offset Tee</td>
</tr>
</tbody>
</table>

3 - Pumps Configuration (Taco 007)

Fig. 10

- Use a 1/2" x 1/8" bushing with temperature gauges.

NOTE: Short loops have low resistance and the pump must be mounted lower. See Hydronic Heating Components Guide.

© 2011 Central Boiler
3- Pump Parts List (Taco 007 & Taco 014)

Fig. 13

<table>
<thead>
<tr>
<th>Qty</th>
<th>P/n</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>118</td>
<td>3/4” Close Nipple</td>
</tr>
<tr>
<td>2</td>
<td>171</td>
<td>007 Pump</td>
</tr>
<tr>
<td>1</td>
<td>170</td>
<td>014 Pump</td>
</tr>
<tr>
<td>8</td>
<td>196</td>
<td>3/4” Ball Valve</td>
</tr>
<tr>
<td>2</td>
<td>224</td>
<td>3/4” Isolation Flange Kits</td>
</tr>
<tr>
<td>2</td>
<td>226</td>
<td>3/4” Isolation Elbow</td>
</tr>
<tr>
<td>3</td>
<td>296*</td>
<td>3/4” Swing Check Valve</td>
</tr>
<tr>
<td>3</td>
<td>274</td>
<td>3/4” 90° Street Elbow</td>
</tr>
<tr>
<td>3</td>
<td>3042</td>
<td>1/2” x 1/8” Bushing</td>
</tr>
<tr>
<td>4</td>
<td>5926</td>
<td>Stainless Steel Clamp Crimp Ring</td>
</tr>
<tr>
<td>11</td>
<td>556</td>
<td>32” Power Supply Cord</td>
</tr>
<tr>
<td>2</td>
<td>6054</td>
<td>3/4” x 1” MPT to PEX</td>
</tr>
<tr>
<td>4</td>
<td>6764</td>
<td>3/4” x 3/4” x 1/2” Offset Tee</td>
</tr>
<tr>
<td>10</td>
<td>6764</td>
<td>3/4” x 3/4” Bushing</td>
</tr>
</tbody>
</table>

Parts and accessories sold separately. Pump size may vary.

Power disconnect shuts off all power including pumps.

Installing Circulation Pumps

The following guidelines must be adhered to when installing the circulation pump(s).

NOTE: See the Hydronic Component Selection Guide (p/n 2482) for more information.

WARNING

Maximum load of the outlet on the outdoor furnace is 10A, 120VAC, and 60Hz.

A. The pump motor must be installed in a horizontal position.

B. The junction box must not be located below the pump motor (see Fig. 14). If necessary, remove the four screws and rotate the pump body.

Fig. 14

Incorrect
Correct
Correct

Junction Box on bottom
Junction Box on side
Junction Box on top

C. Do not operate the circulation pump until the entire system has been filled with water and checked for leaks or the pump will be damaged.

D. Insulate the areas around the supply and return lines, pumps and drain valve (Fig. 15); then install and secure the back panel.

NOTE: If installing three pumps on the outdoor furnace, use a UL approved adapter on the receptacle outlet.

NOTE: At least one circulation pump must run continuously to ensure proper operation of the outdoor furnace.

The circulation pump(s) must be installed in the supply line(s) with the arrow on each pump pointed away from the outdoor furnace. In order to avoid circulation problems, do not install the pump(s) in the return line(s).

The pump(s) must be located near the base of the outdoor furnace if the system has a high-flow pump or very low resistance on the outlet side of the pump. For example, if the outdoor furnace is 20 feet from the building and pumping water through one-inch pipes, a heat exchanger, and back to the outdoor furnace, the pump needs to be mounted with four feet or more of water above the pump.

NOTE: See the Hydronic Component Selection Guide (p/n 2482) for more information.
Installing the circulation pump(s) at the outdoor furnace is recommended, but required if the building being heated is higher than the outdoor furnace or if there is a large rise in the water lines between the outdoor furnace and building (see Fig. 17 and 18). Hot water boils at a lower temperature when pulled uphill (because it is at a lower pressure); therefore, hot water must be pushed uphill to ensure proper circulation.

Shut-Off Valves
Shut-off valves should be installed on both sides of each pump so if it becomes necessary to repair or replace the pump, the pump can be isolated.

Filters
A Y-strainer or filter may be installed at the outlet side of the pump to remove foreign particles which may be present in the water. Always install Y-strainers with the cleanout in the lowest position.

Optional Thermostatic Valves
NOTE: For thermostatic valves, contact your authorized Central Boiler dealer.

NOTE: The thermostatic valves illustrated throughout the manual may vary from your installation. See the installation instructions provided with the thermostatic valve.

An optional thermostatic valve can be installed on each set of supply and return lines in the system to maintain the outdoor furnace water temperature above 150°F (65°C). Operating the outdoor furnace with the water temperature less than 150°F (65°C) may result in more condensation in the firebox that can lead to corrosion.

It is recommended that the water temperature setpoint of the furnace be set to 185°F (85°C) to decrease the likelihood of the water temperature falling to 150°F (65°C). As a result, the outdoor furnace will operate with a greater efficiency and require less maintenance. Failure to follow proper operating instructions may result in furnace damage.
Optional Thermostatic Valve - How It Works

NOTE
Install a Thermostatic Valve on each set of supply and return lines in the system. Each Thermostatic Valve must be installed inside the building to be heated.

NOTE
The proper level of Corrosion Inhibitor Plus™ (p/n 1650) must be maintained (see Owner's Manual for more information).

Water Below 150°F at Thermostatic Valve
(water returns to furnace to be reheated)

- **Trace Flow**
- Hot Supply from Outdoor Furnace
- Valve shuts off flow to heat emitter(s).
- Valve bypasses heat emitter(s).
- Return to Outdoor Furnace

Water at 150°F up to 170°F at Thermostatic Valve
(water is partially released to heat emitter(s) and partially bypassed)

- **Trace Flow**
- Hot Supply from Outdoor Furnace
- Valve allows full flow to heat emitter(s).
- Valve allows partial bypass.
- Return to Outdoor Furnace

Water Above 170°F at Thermostatic Valve
(water is released to heat emitter(s))

- **Trace Flow**
- Hot Supply from Outdoor Furnace
- Valve allows full flow to heat emitter(s).
- Valve shuts bypass.
- Return to Outdoor Furnace
Purging Air from the System - Manual Air Bleeders
Manual air bleeders may be installed in the high points of the water lines where air may get trapped and cause circulation problems. Water can be pumped to levels higher than the outdoor furnace as long as the pump is pushing the water to the higher level and there are no air leaks in the system. Air should be purged from the system using pressurized domestic water and a hose with two female ends (see Fig. 21 and 40).

NOTE: See the Hydronic Component Selection Guide (p/n 2482) for more information.

Fig. 21

WARNING
The outdoor furnace vent cap must fit loosely on the vent opening. Do not force the cap down or try to seal it tightly onto the vent pipe. Do not extend or restrict the vent pipe or opening. DO NOT ALLOW THE OUTDOOR FURNACE TO BE PRESSURIZED.

If any auto float vents are present in the system, they must be capped off tightly to prevent air from entering the system.

NOTE: Furnace shown for illustration purposes only.

CAUTION
Costly maintenance may be incurred if steps are not taken during installation to reduce or eliminate the possibility of the water temperature in the water heater exceeding the high limit.

NOTE: Some gas water heaters are equipped with a high water temperature probe that is connected to the gas valve. When the water temperature exceeds the high limit, the gas valve enters a non-resettable lock out condition. This requires replacement of the entire valve. The installer must determine if this type of valve is present before installation of a water-to-water heat exchanger.

Fig. 22

WATER HEATER INSTALLATION

WARNING
DO NOT disable or remove any safety reliefs or controls. Turn off the power to the water heater before installation.

When installing a domestic hot water heat exchanger, the hot supply line from the outdoor furnace should be plumbed first to the water heater heat exchanger and then to the balance of the heating system.

A manual 3-way valve may be installed so that during the non-heating season, the water heater may be operated without operating the entire heating system (see Fig. 24). A tempering valve (or thermostatic mixing valve) is to be installed in the hot water outlet from the water heater. Install a tee in a fitting on the top of the water heater (see Fig. 22) for the hot water heat exchanger.

NOTE: If the water heater has been in service, flush the water heater prior to installing the hot water heat exchanger. Anode rod residue or other sediments in the water heater may plug the heat exchanger.

NOTE: Use softened water if water has a high mineral content to avoid plugging the heat exchanger.

NOTE: A pump must be installed in the hot supply line between the outdoor furnace and thermostatic valve.
EXISTING FORCED AIR INSTALLATION

When the Classic Dual Fuel Outdoor Wood Furnace is installed in conjunction with an existing forced air system, a water-to-air heat exchanger is mounted in the plenum or duct work of the existing furnace. Heated water from the outdoor furnace either continuously flows through the water-to-air heat exchanger or is diverted through a 3-way zone valve. When the thermostat senses the need for heat, the fan on the existing heating system forces air through the heat exchanger, transferring heat throughout the existing ductwork.

Following are several important items for this type of installation.

- Plenums installed to the furnace must be constructed of metal in accordance with NFPA 90B, 2-1.3.
- If an air conditioning coil is located in the plenum, the heat exchanger should be mounted between the fan and the air conditioning coil so the heat exchanger will not freeze when the air conditioner is being used.
- The heat exchanger should not be installed in the cold-air return of the existing forced air furnace because components of the existing furnace could overheat.
- The heat exchanger may be mounted either horizontally or vertically with the outlets on the side (see Fig. 23).

Fig. 23

Proper Heat Exchanger Mounting in Forced Air Furnace

- In all applications, the heat exchanger must be mounted level from front to back, with the outlets on the side. If the outlets are positioned upward or if the exchanger is not level, an air lock can restrict the water circulation and reduce the amount of heat transfer.
- The lower fitting is the inlet/hot supply from the outdoor furnace and the top fitting is the outlet/return back to the outdoor furnace.
- It is best to install a heat exchanger that fits the plenum.
- If the plenum is larger than the heat exchanger, it should be mounted in the center without gaps on the sides that would allow air to flow around the heat exchanger. All air must be directed through the face of the exchanger. Air flow deflector need to be installed in the plenum on the outlet side of the heat exchanger if air flow is funneled into the heat exchanger.
- Be sure to consider the airflow through the ductwork so air circulation is not blocked off to parts of the building.
- Adding a heat exchanger coil in the hot air plenum or ductwork of the existing furnace may decrease the air flow in the system. The existing heating (gas or electric) system should be operated before adding the heat exchanger.
- The air temperature rise should be measured with the system running for an adequate amount of time to get a stabilized temperature reading. The heat exchanger can then be installed in the system. The existing heating system should be operated again and the air flow should be adjusted to maintain the same temperature reading. The air flow may have to be increased to accomplish this.
- On a belt-drive system, the blower pulley and/or motor pulley may be changed; however, the electrical current flowing through the motor must not be changed to exceed the nameplate rating. A larger blower motor may be used. On a direct-drive system, in most cases the blower motor will not need to be replaced; however, the speed of the blower motor may have to be increased.

CAUTION

When installing the heat exchanger, be sure none of the existing system safety controls are disabled.

NOTE: Any electrical installation should be done by a certified electrician in accordance with all applicable codes.

- Due to the internal circuitry of some thermostats, a snap disc temperature control may have to be installed on the heat exchanger manifold to provide an interlock for the air conditioner. This prevents the air conditioner from operating when the water temperature is higher than 140°F.
Water-to-Air Heat Exchanger and Water Heater System

NOTE: A certified electrician must perform the electrical installation.

- **Thermostatic Mixing Valve**
- **Hot Supply**
- **Heat Exchanger**
- **Optional Bypass Valve**
- **Existing Water Heater**
- **Central PEX®**
- **Existing Forced Air Furnace**

NOTE
A pump must be installed in the hot supply line between the outdoor furnace and thermostatic valve. Outdoor furnace water temperature setpoint should be set at 185°F (85°C) minimum.

NOTE
This horizontal assembly must not exceed a height of 4 inches (10 cm) above top of water heater.

NOTE
For illustration purposes only, water heater styles may vary.

NOTE
Installer must comply with all applicable codes and regulations.

NOTE
On multi-speed fans, cap and tape off any extra wires.

NOTE
This configuration allows use of a 24-volt thermostat on older forced-air units with no control board.

For illustration purposes only.

White
- Neutral

Black
- Neutral

White
- White

Brown
- Red

Black
- Black

Ground
- Ground, Hot and Neutral Wires at Furnace

Thermostat p/n 588

110-V Line Voltage

24-Volts Thermostat

C is optional with batteries

Ground

Fan Switch or Snap Disc on Furnace

Optional Bypass Valve

Optional Thermostatic Valve

Return to Outdoor Furnace

Plenum

For illustration purposes only, water heater styles may vary.

NOTE
For illustration purposes only, water heater styles may vary.

NOTE
Installer must comply with all applicable codes and regulations.

NOTE
On multi-speed fans, cap and tape off any extra wires.

NOTE
This configuration allows use of a 24-volt thermostat on older forced-air units with no control board.

For illustration purposes only.

Section 1 - Furnace Installation
Section 1 - Furnace Installation

Forced Air Heating System

A pump must be installed in the hot supply line between the outdoor furnace and thermostatic valve. Outdoor furnace water temperature setpoint should be set at 185°F (85°C) minimum.

NOTE
Installer must comply with all applicable codes and regulations.
Thermostatic Controls
There are several methods for installing thermostatic controls for this type of installation.

1. If the forced air furnace has connections for control of the blower from a thermostat or switch, the simplest method is to add a second 24-volt thermostat. Wire the thermostat to the forced air furnace so that upon a call for heat, the thermostat closes the connection between power (usually 'R' or red) and the fan terminal (usually 'G' or green). By setting the new thermostat to the desired room temperature, it will control when the blower operates, drawing heat from the outdoor furnace. The existing thermostat should be set a few degrees below the new thermostat. This setting will be the temperature at which the existing forced air heating system will operate if the outdoor furnace is out of fuel. Refer to Fig. 26 for one possible arrangement.

2. An alternative method is to install a line voltage thermostat to control the blower on the forced air furnace. In this installation, a 120-volt line is run from the thermostat to the forced air furnace. One wire is connected to the hot (line feed) and the other wire is connected to the forced air furnace blower wire. A low water temperature switch may be installed to shut off the blower if the temperature of the water is too low. The switch is connected in series to the wire coming from the line voltage thermostat and must be installed so that it does not affect the forced air system thermostat.

NOTE: If the low water temperature switch is not installed, the fan will run continuously even when the outdoor furnace is out of fuel. This will keep the water in the outdoor furnace approximately the same temperature as the air in the building (to prevent the water in the outdoor furnace from freezing).

Fig. 26

Wiring Diagram for p/n 8200008
(Forced Air Application)

Connect a wire from "R" on your existing thermostat to "R" on the additional thermostat then connect a wire from "G" on your existing thermostat to "W" on the additional thermostat.

NOTE

The additional thermostat is set to a higher temperature to allow the blower fan to run without running the furnace.

NOTE

This is one of several variations. If air conditioning is present, a temperature control should be installed on the heat exchanger manifold to provide an interlock for the air conditioner. This prevents the air conditioner from operating when the water temperature is higher than 140°F.
HEATING MULTIPLE ZONES OR BUILDINGS
A single pump and manifold may be used to heat more than one zone as long as the return water can be maintained above 150°F. If the return water temperature can not be maintained above 150°F, then a separate pump should be used for each zone. A thermostatic bypass valve should be installed to ensure that the water temperature in the outdoor furnace is maintained above 150°F.

If a manifold is used (as illustrated in Fig. 27), a swing check valve (p/n 296) should be installed in the line at the outlet of the pump. The swing check valve must be installed in a vertical position with the direction of flow as designated by the arrow on the swing check valve. This will prevent reverse circulation and loss of heat on multiple zones if one pump fails. Hose bibs (p/n 199) should be installed on each supply and return manifold (as illustrated in Fig. 27) to allow for purging air from the zones.

Fig. 27

Models with side panels offer three sets of supply and return ports (for up to three zones or buildings, without the need for manifolds) for mounting of up to three pumps on the outdoor furnace.

NOTE: If a Taco 014 pump is used, the pump should be mounted at the base of the outdoor furnace and a 1-1/4” supply line to the pump should be used to ensure adequate supply feed to the pump.

NOTE: If the outdoor furnace is unable to maintain a water temperature of 150°F (66°C) or higher, inspect the thermostatic valve and replace if necessary.

NOTE: A properly-sized backup furnace or boiler should be configured to provide heat if the outdoor furnace is out of wood or the heat load exceeds the capacity of the outdoor furnace.
HYDRONIC INSTALLATIONS
NOTE: It is recommended that the circulation pump in all hydronic systems be located in the hot supply line, not in the return line (see Fig. 28 and 29).

Evaluate the existing hot water heating system before starting the installation. If the existing hot water heating system has been unable to maintain the temperatures in the building at any time during cold weather before installing the outdoor furnace, then the hot water heating system is not adequate. More baseboard or other type of heat exchanger must be added.

If a water-to-water heat exchanger is to be used with an existing heating system, the existing heating system must be able to adequately heat the building with a water temperature of approximately 165°F. Some existing finned tube baseboard hot water heating systems are designed to operate with water temperatures up to 220°F or higher.

If the existing heating system is marginal or designed to operate with water temperatures above 165°F, there are alternative installation procedures that will make the existing system work very well with the outdoor furnace. These include:

1. Add more finned tube water baseboard heaters or panel radiators.
2. A water-to-air heat exchanger with a thermostatically controlled fan can be installed in the lower part of the building being heated (Fig. 28). This can increase the amount of heat added to the building, helping to maintain a constant temperature. This heat exchanger can be added in the return line of the system after the water-to-water heat exchanger.
3. An additional radiant heating circuit can be added to heat areas that require additional heat.

Fig. 28

Water-to-Water Shell & Tube Exchanger with Existing Boiler

This valve should be closed if the outdoor furnace is not being operated in the summer.

This pipe must not exceed a height of 4 inches (10 cm) above top of water heater.

NOTE
Outdoor furnace water temp setpoint should be set at 185°F (85°C) minimum.

NOTE
A pump must be installed in the hot supply line between the outdoor furnace and thermostatic valve.

For illustration purposes only, water heater styles may vary.

NOTE
Installer must comply with all applicable codes and regulations.
Pressurized Water System Installations

Water-to-Water Heat Transfer System

To keep the existing system pressurized, a plate exchanger or tube & shell water-to-water heat exchanger installed in the return line of the existing system may be used (see Fig. 28 and 29). The water from the existing system passes through the heat exchanger when the thermostat calls for heat. The water from the outdoor furnace circulates through the other side of the heat exchanger continuously.

It may be necessary to lower the water temperature at which the burner in the existing boiler starts to a setting that prevents the burner in the existing boiler from cycling on when the outdoor furnace is heating the building. Another option is to install a thermostatically controlled interlock switch that prevents the burner in the existing boiler from operating when the water temperature in the outdoor furnace is above 150°F.

Water-to-water heat exchangers will produce transfer temperatures approximately 20°F less than the outdoor furnace water temperature; therefore if the outdoor furnace water temperature is 185°F, it will produce approximately 165°F of water temperature transfer. The temperature controller on the outdoor furnace may be adjusted to allow the outdoor furnace to reach water temperatures up to 195°F. Each system will vary in water temperature transfer depending upon the heat load of the existing heating system.

The addition of a wraparound pump with a water-to-water heat exchanger (see Fig. 29) may increase heat transfer by allowing circulation continuously through the existing boiler and heat exchanger. This will maintain the maximum temperature in the heat exchanger for heat transfer to the existing boiler. Note the water flows in opposite directions through the heat exchanger.

With this type of installation, the exchange temperature may be more than 165°F and may eliminate the need for additional baseboard heaters, panel radiators or heat exchangers.

When installing water-to-water heat exchangers, be sure to flush any rust particles or sediments out of the existing boiler and install a Y-strainer as illustrated in Fig. 29. Also be sure to add MolyArmor 350 (p/n 2900630).

A Taco 007 or 014 pump can be used as a wraparound pump when a plate exchanger is installed. A Taco 009 or 014 pump should be used when a shell and tube heat exchanger (i.e., p/n 148, 151 or 177) is installed.

NOTE: See the Hydronic Component Selection Guide (p/n 2482) for more detailed information.
Vented System Installation
The Classic Outdoor Wood Furnace may be connected directly into an existing hot water system, changing it to an atmospheric vented system.

NOTE: Any changes in the existing boiler and/or system should be done by a certified installer in accordance with applicable codes. Be sure the system water is properly maintained with MolyArmor 350 (see Water Quality and Maintenance section).

The hot supply line from the outdoor furnace can be connected into the top of the existing boiler and returned to the outdoor furnace from the bottom of the boiler (see Fig. 30). Use one pump to continuously circulate the water from the outdoor furnace through the existing boiler and back to the outdoor furnace.

CAUTION
The outdoor furnace must NEVER be pressurized. The vent cap must always be loose. Do not extend the vent pipe. The outdoor furnace will be damaged if it is pressurized.

When the existing system is connected to the outdoor furnace as illustrated in Fig. 30, the circulating pump(s) in the existing system must be located in the hot supply line(s), not in the return line(s). A flow check or zone valve will prevent thermal circulation and overheating of building.

It is very important to eliminate all air and water leaks (valve packings, bleeders, etc.) and purge all air from the existing system.

1. After filling the outdoor furnace (see Initial Start-Up Procedures section) and existing system with water, purge the air from the indoor system by closing the valves on the outdoor furnace; then pressurize the indoor system with water from the domestic water line.

CAUTION
Do not apply more pressure to the indoor system than the pressure relief valve on the existing boiler is rated for.

2. Bleed air from the pressurized indoor system; then operate the circulating pump(s) on the indoor system. Perform this procedure twice. If any auto float vents are used in the existing system, they must be capped off tightly after the air bleeding is completed. This eliminates the possibility of allowing air to enter after the system is depressurized.

3. When the indoor system is completely purged of air, close the valve on the water line used to pressurize the indoor system. If any air is trapped in the system, it can reduce water flow. This will prevent the system from heating properly.

4. Open valves on the outdoor furnace, turn on the pump and proceed to start the fire in the outdoor furnace.

Direct Hookup to Existing Boiler

Fig. 30
Direct Circulation Baseboard Installation
Baseboard heaters, as either the main source of heat or as supplements to forced-air or boiler applications are easily plumbed into the water lines from the outdoor furnace.

Fig. 31

Fig. 32

Dual System
(Baseboard / Forced Air)

Baseboard System
(Three Way Zone Valve Controlled)
Radiant Floor System Installations

Installing radiant floor (ceiling) heating is a very viable heating option when either remodeling or building new. Radiant floor heat can also be added easily if the floor joists are exposed (as in an unfinished basement). Tubing may be installed in a wide variety of configurations and locations including, but not limited to, the following:

- In a concrete slab
- Within the subfloor system (e.g., Gyp-Crete®)
- Within the floor joist system
- Within the walls or ceilings

When installing tubing between floor joists (16" on center) run two 1/2" tubes between each joist. Insulate below the tubing to prevent excessive heat in the lower level.

Proper insulation is key to effective radiant heating and controlling large heat demands. Heat from this type of system radiates equally in all directions. As an example, if tubing is installed in a slab, the ground below the slab must be dry and well-insulated. If not properly insulated, nearly 50% of the heat will be wasted warming the ground below the slab. Two inches of blueboard insulation is recommended. Two 1" layers of blueboard can be used. This allows lapping of the joints in the 4' x 8' sheets.

NOTE: Do not use beadboard (expanded polystyrene), bubble foil or roll-out foam insulation.

NOTE: A minimum of one inch of insulation should be used. Two inches of insulation and vapor barrier below the insulation is recommended.

Areas with high water tables need to be prepared properly to prevent contact between the ground water and insulation.

For examples of radiant heating systems using 1/2" tubing in the loops, refer to Fig. 33 through Fig. 36.

The spacing of each circuit should be 12" between tubes. The water circulates in opposite directions to provide an even distribution of heat. The mixing valve regulates the temperature of the water circulating through the loops by mixing return water with the hot supply water. In applications where high heat loss is expected, loop spacing may be reduced to 10" or less. If additional information is desired, contact your dealer.

NOTE: The longer the loop length, the lower the flow rate and the lower the heating capacity. Loop lengths greater than 350 feet (107 m) are not recommended.

NOTE: The temperature of the water used in radiant heating should be determined by the installer in accordance with the application.

NOTE: It is not uncommon that it can be very difficult to get a concrete slab up to temperature in late fall or early winter in a new building that is not completely sealed and not well insulated. Once the building is completely sealed and well insulated, bringing the slab up to temperature can still take a considerable amount of time and wood; however, once warm, wood consumption will be reduced if the concrete slab and building are insulated properly.

NOTE: For zone installations, refer to Fig. 34 (multi-zone) or Fig. 36 (single zone).
Multi Zone In-Floor

Section 1 - Furnace Installation

Fig. 34

- **1" Central PEX**
- **Return to Outdoor Furnace**
- **Top View**
- **1" Copper Piping**
- **Mixing Valve**
- **Insulation**
- **Insulation**
- **Poly Vapor Barrier**

1/2" Central PEX Piping is spaced 6" from outside wall. Remaining piping is spaced 12" on center.

- **Sheet Rock**
- **Minimal heat radiated downward**
- **PEX Hangers should be installed every 18".**
- It is recommended that you maintain a 2" cavity between piping and insulation for best performance.

- **Floor Covering**
- **Sub Floor**
- **2" Minimum**
- **1/2" Central PEX**
- **Insulation**
- **Underlayment**

NOTE

- Installer must comply with all applicable codes and regulations.
- Outdoor furnace water temperature setpoint should be set at 185˚F minimum.
- A pump must be installed in the hot supply line between the outdoor furnace and thermostatic valve.
- Installer must comply with all applicable codes and regulations.

Fig. 35

Dual System

(In Floor Radiant / Forced Air)

- **Thermostatic Mixing Valve**
- **Thermostatic Valve**
- **Water-to-Water Heat Exchanger**
- **Bypass Line**
- **Central PEX**
- **Water Heater**
- **Forced Air Furnace**
- **Optional 3-Way Bypass Valve**

This horizontal assembly must not exceed a height of 4 inches above top of water heater.

For illustration purposes only:
- Water heater styles may vary.
- Size of incoming line may vary (depending on application).
- Location of thermostat may vary.

NOTE

- A pump must be installed in the hot supply line between the outdoor furnace and thermostatic valve.
- 4 x Pipe Dia. Max. (e.g., for 1" pipe, fittings must not be more than 4" apart)
- Optional Thermostatic Valve
- Outdoor furnace water temperature setpoint should be set at 185˚F minimum.
- Installer must comply with all applicable codes and regulations.
Section 1 - Furnace Installation

Radiant Heat Single Zone

- **NOTE**: Outdoor furnace water temperature setpoint should be set at 185°F minimum.

- **NOTE**: A pump must be installed in the hot supply line between the outdoor furnace and thermostatic valve.

- **NOTE**: Outdoor furnace water temperature setpoint should be set at 185°F minimum.

NOTE: Installer must comply with all applicable codes and regulations.

NOTE: ON/OFF switch must be in the "ON" position for this install.

NOTE: Outdoor furnace water temperature setpoint should be set at 185°F minimum.

NOTE: Installer must comply with all applicable codes and regulations.

NOTE: Outdoor furnace water temperature setpoint should be set at 185°F minimum.

NOTE: Installer must comply with all applicable codes and regulations.

NOTE: A pump must be installed in the hot supply line between the outdoor furnace and thermostatic valve.

NOTE: Outdoor furnace water temperature setpoint should be set at 185°F minimum.

- **NOTE**: Installation uses approximately 10' of 1" copper.
- **NOTE**: The amount of 1/2" PEX will vary depending on installation.

NOTE: A pump must be installed in the hot supply line between the outdoor furnace and thermostatic valve.

NOTE: Outdoor furnace water temperature setpoint should be set at 185°F minimum.

NOTE: Installer must comply with all applicable codes and regulations.

NOTE: ON/OFF switch must be in the "ON" position for this install.

NOTE: Outdoor furnace water temperature setpoint should be set at 185°F minimum.

NOTE: Installer must comply with all applicable codes and regulations.

NOTE: A pump must be installed in the hot supply line between the outdoor furnace and thermostatic valve.

NOTE: Outdoor furnace water temperature setpoint should be set at 185°F minimum.

NOTE: Installer must comply with all applicable codes and regulations.

NOTE: A pump must be installed in the hot supply line between the outdoor furnace and thermostatic valve.

NOTE: Outdoor furnace water temperature setpoint should be set at 185°F minimum.

NOTE: Installer must comply with all applicable codes and regulations.

NOTE: A pump must be installed in the hot supply line between the outdoor furnace and thermostatic valve.

NOTE: Outdoor furnace water temperature setpoint should be set at 185°F minimum.

NOTE: Installer must comply with all applicable codes and regulations.
Pool and/or Hot Tub Heating

Valves should be installed so the heat exchanger can be isolated and bypassed when shock-treating or adding chemicals to a pool or hot tub (Fig. 38). Incorrect chemical concentrations can cause rapid corrosion to the heat exchanger. Bypassing the heat exchanger is recommended until the pH has stabilized between 7.2 and 7.8.

If the swimming pool or hot tub is salt water treated, the heat exchanger should be a shell and tube type (p/n 148, 151 or 177). See the Hydronic Component Selection Guide (p/n 2482) for more information.

CAUTION

Do not install a swimming pool heat exchanger inside a building below the level of the pool as a damaged heat exchanger may result in extensive flooding and draining of the pool.

WARNING

Do not use automotive or ethylene glycol antifreeze in an outdoor furnace connected to a swimming pool heat exchanger as a damaged heat exchanger may cause severe personal injury, death, or substantial property damage.

CAUTION

Do not operate the outdoor furnace frequently or for extended periods of time with the water temperature below 150°F (65°C) as this will result in more condensation in the firebox that can lead to corrosion.

Fig. 38

Swimming Pool/Hot Tub Installation

- **110-V Power Source**
- **24-V Transformer**
- **3-Way Zone Valve**
- **Pool Aquastat (with Well)**
- **PVC or ABS Pipe and Accessories**
- **Note**: Do NOT use MPN Series heat exchangers with salt chlorinated pools or hot tubs.

Pools and hot tubs typically have high water flow rates, from 30 to 50 gpm. Because the MPN Series is a high efficiency heat exchanger and does not require the full pool gpm flow, a bypass balancing valve must be used to bypass a portion of the pool water. There should be a shut-off valve installed on the supply and return line to and from the pool. Close these valves and fully open the bypass balancing valve when chemically treating ("shocking") the pool or hot tub to stop the flow of the low pH water to the heat exchanger. These valves can be opened only after the pH has reached the safe level as recommended by the pool or hot tub manufacturer. Return the bypass balancing valve to the previously adjusted position.

NOTE: Outdoor furnace water temperature setpoint should be set at 185°F minimum.

NOTE: A pump must be installed in the hot supply line between the outdoor furnace and thermostat valve.
FINALIZING THE INSTALLATION
Use the steps in this section to complete the installation and fill the outdoor furnace system for the first time, or any time the system has been completely drained and needs to be refilled.

Before you fire the outdoor furnace for the first time, it is very important to perform the following important steps in order.

NOTE: 4030 Models Only - Remove and discard the shipping tape securing the chimney restrictor; then position the chimney restrictor about 11" in from the end of the chimney tee as shown in Fig. 39.

Fig. 39

11" (28 cm)

1. Test Supply Water
Test a sample of the supply water (makeup water) that will be used to fill the outdoor furnace (softened water is recommended). Test strips for testing pH are included in the water test kit which is provided with the outdoor furnace.

1. Collect a small sample of the water to be used to fill the outdoor furnace in a clean container.

2. Dip the pH test strip from the provided test kit in the water sample. Shake excess water off the test strip. Compare the color of the test strip to the chart provided to determine pH level.

3. If the pH level is between 6.5 and 8.0 and there are no other known water quality problems, then the outdoor furnace may be filled with this water.

4. Water that has a pH level of less than 6.5 or greater than 8.0, or that has other known water quality problems, should not be used to fill the furnace. Instead, water should be supplied from a different source.

2. Remove Strapping Securing the Vent Cap
Remove the strapping securing the vent cap. The vent cap must fit loosely over the outdoor furnace vent.

3. Check for Leaks
Close the valves on the outdoor furnace before checking for leaks. Do not pressurize the outdoor furnace. Pressure-test the entire plumbing system. Apply 50 psi (3.5 kg/cm²) of air pressure for thirty minutes and closely monitor for any pressure loss. Inspect all fittings and hose ends for any signs of leakage using leak detection solution (leak soap); repair as necessary.

4. Cover Supply and Return Lines
Backfill the trench for the supply and return lines. Enclose the area where the supply and return lines enter the outdoor furnace. Do not leave the PEX hot supply and return lines exposed to sunlight as exposure to UV rays will damage them.

5. Adding Initial Water Treatment

CAUTION
Avoid damaging your furnace and voiding your warranty. Add water treatment BEFORE adding water to the system. Water treatment in your outdoor furnace is just as important as the oil in a car’s engine.

Fig. 40

Add MolyArmor 350

MolyArmor 350 Corrosion Inhibitor (p/n 2900630) gives optimum protection for the furnace water jacket and system parts when it is used to initially treat the water and is maintained at a minimum of 350 ppm of moly and pH level between 8.0 and 9.5. The recommended initial treatment rate for the outdoor furnace is specified by units. One unit of MolyArmor 350 is a 1-gallon (3.78-liter) container.

<table>
<thead>
<tr>
<th>INITIAL MOLYARMOR 350 TREATMENT AMOUNT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
</tr>
<tr>
<td>CL 4030</td>
</tr>
<tr>
<td>CL 5036</td>
</tr>
<tr>
<td>CL 6048</td>
</tr>
<tr>
<td>CL 7260</td>
</tr>
</tbody>
</table>

1. Add the recommended amount of MolyArmor 350 Corrosion Inhibitor to the outdoor furnace.
NOTE: If the system has a larger than normal water capacity, more MolyArmor 350 should be added at a recommended rate of 6.5 oz. (190 ml) per 10 gallons (37.8 liters) of system water. One unit (1 gallon or 3.78 liters) of MolyArmor 350 Corrosion Inhibitor will treat 200 gallons (757 liters) of system water.

2. Fill the furnace and system using the instructions from Step 6 to ensure air is purged from the system.

6. Fill Outdoor Furnace with Water and Purge Air

NOTE: If adding antifreeze to the system, refer to Adding Antifreeze to Outdoor Furnace System for important information.

CAUTION

If using antifreeze, use only a nontoxic boiler-type antifreeze. It is imperative that the entire system contain at least 30% antifreeze concentration mixed with softened reverse osmosis or deionized water to prevent bacterial growth. Be sure to adhere to all warnings and precautions on the antifreeze label.

NOTE: If the outdoor furnace is being filled with water when the temperature is below freezing, circulate the water immediately after filling to prevent freezing the water lines.

NOTE: The circulation pump(s) must be installed in the hot supply line(s).

NOTE: All air must be purged from the water lines when filling the system. Be sure to purge the air from each pump circuit from the outdoor furnace.

Use water from a pressurized domestic water system to fill the outdoor furnace and purge the system of air. Refer to the method for your system, depending on whether or not the optional thermostatic valve has been installed.

For Systems with Optional Thermostatic Valve Installed

Use this procedure to fill the outdoor furnace with water from a pressurized domestic water system and to purge the air from the system if the optional thermostatic valve has been installed. Be sure to purge the air from each pump circuit from the outdoor furnace. All valves in the outdoor furnace system should be opened before starting this procedure.

NOTE: If using the valve on the water heater to fill the outdoor furnace, flush the water heater to remove all sediment before filling the outdoor furnace.

NOTE: Refer to the illustration when performing these steps.

1. Connect the male end of garden hose A to valve #1 using the backflow preventer and two 3/4” female hose x 3/4” male pipe adapters (p/n 4928). Connect the female end of the garden hose to valve #2.

2. Close the valves on the hot supply and return lines of the outdoor furnace.

3. Close valve #4 and valve #5.

4. Open valve #1 and valve #2. This step begins filling the system with domestic water and purging the hot supply line and thermostatic valve.

5. Remove cap from valve #3 and open valve #3 slightly to purge air from valve body. Close valve #3 when air is purged.

6. Open valve #5.

7. Open the valve on the hot supply line of the outdoor furnace for 5 minutes; then close the valve. Water will purge air from the hot supply line. The valve and attached fittings on the outdoor furnace will become cold as water starts filling into outdoor furnace.

8. Close valve #5, #1 and #2.

9. Move hose A from valve #2 to valve #3.

10. Open valves #1, #3 and #4.

NOTE: Skip to Step 12 if your system does not have a seasonal manual bypass valve (valve #6 shown in Fig. 41).

11. Valve #6 (seasonal manual bypass valve) should be positioned to direct water through the heat exchanger first.

12. Open the valve on the return line of the outdoor furnace.

NOTE: Skip to Step 14 if your system does not have a seasonal manual bypass valve (valve #6 shown in Fig. 41).

13. As soon as the valve on the return line of the outdoor furnace is opened, turn valve #6 to the bypass direction for 30 seconds; then turn valve #6 back to previous position.

NOTE: The heat exchanger manifold (lower manifold first) and fittings will become cold as water flows through the heat exchanger to the outdoor furnace.

14. Allow outdoor furnace to fill until the water reaches 1" below the full mark.

15. Close valves #1 and #3. Disconnect hose A and replace caps on valves #1, #2 and #3.

16. Open the valve on the hot supply line of the outdoor furnace and valve #5.
NOTE: The valves on the hot supply and return lines of the outdoor furnace, and valves #4 and #5 should all be open, allowing the pump to circulate heated water in the system. Start pump.

For Systems without Optional Thermostatic Valve

Use this procedure to fill the outdoor furnace with water from a pressurized domestic water system and to purge the air from the system if the optional thermostatic valve has not been installed. Be sure to purge the air from each pump circuit from the outdoor furnace. All valves in the outdoor furnace system should be opened before starting this procedure.

NOTE: If using the valve on the water heater to fill the outdoor furnace, flush the water heater to remove all sediment before filling the outdoor furnace.

NOTE: Refer to the illustration when performing these steps.

1. Connect a hose with two female ends and a backflow preventer inline to the pressurized domestic water line. Run water into a pail or other container until clear; then connect to the system.

2. Close the valve on the hot supply line of the outdoor furnace.

3. Open the two valves that allow the pressurized domestic water to fill into the system (water will start entering the outdoor furnace through the return line).

4. Refer to the illustration and confirm the direction of the water flow through the system by feeling the temperature along the direction of the system flow at the water lines, heat exchanger and return port on the outdoor furnace. If the parts of the system in the opposite direction are changing temperature, then the supply and return lines are reversed and should be corrected.

5. Let the outdoor furnace fill through the return line for about five minutes.

6. Close the valve on the return line of the outdoor furnace (both valves will now be closed) while the water is still entering the outdoor furnace.

7. Open the valve on the hot supply line of the outdoor furnace. Confirm the flow direction on the supply side (water-to-water heat exchanger and supply port on the outdoor furnace).
8. Fill for 5 minutes; then, if more than one pump circuit is present, close the valves and repeat the process for each pump circuit. Once all pump circuits have been purged with water, continue filling the outdoor furnace until the water level reaches one inch below the FULL mark on the sight gauge to allow for expansion of water as it heats up.

9. Close the two filling valves.

10. Open all valves on the outdoor furnace and turn on the circulation pump(s). This will allow the water to circulate throughout the outdoor furnace system when the pump(s) are operating.

NOTE: At this point, water should not be allowed to circulate through the existing heating system.

7. Immediately Heat the System Water to 185˚F (85˚C)

1. Refer to Cold Start Firing in the Owner's Manual to start the outdoor furnace. Bring the water temperature up to operating temperature (185˚F or 85˚C) for two hours with the system circulating; then add water to the full mark. Continue to run the pump and circulate the water for 24 hours.

NOTE: It is important to bring the water in the system up to operating temperature (i.e., 185˚F or 85˚C) immediately after filling the system. This also applies any time water is added to the system.

NOTE: If there are multiple circuits connected to the outdoor furnace, repeat the process for each circuit.

CAUTION

Be sure the outdoor furnace is filled with water before firing. Never fire the outdoor furnace when the water level is more than 1" (2.5 cm) below the FULL mark on the sight gauge.

NOTE: The sight gauge valve should always be closed except when checking water level. Water will automatically drain from the sight gauge tube. Remember that this type of valve requires only 1/4 turn to open or close.

2. Check the system for leaks again. Inspect all fittings and hose ends for any signs of leakage; repair as necessary. It may be possible to stop a very slow leak at a hose clamp by tightening the clamp after the system has warmed up and the poly becomes more pliable. It might also be necessary to install a second hose clamp with the screw positioned on the opposite side.

8. Test the Treated System Water

After circulating the water in the system for 24 hours, test the treated system water for the recommended moly (at least 350 ppm) and pH level (between 8.0 and 9.5).
1. To obtain a system water sample, bend the sight gauge tube away from the outdoor furnace. Before collecting the sample, open the valve and drain about a quart of water from the sight gauge tube; then carefully fill the sample container without contaminating the sample. **Be sure to properly install the sight gauge tube and close the valve when finished.** The water in the sight gauge valve and tube will drain when the valve is closed.

2. Dip a pH test strip from the test kit in the water sample. Shake excess water off the test strip. Compare the color of the test strip to the chart provided to determine pH level. The pH of the treated water should be between 8.0 and 9.5.

3. Follow the instructions provided in the water test kit to test the moly level of the treated system water.

Maintenance Levels
Test the pH and moly levels after the first three months and every six months thereafter, and after adding water to furnace.

NOTE: It should not be necessary to add water to the outdoor furnace more frequently than once every twelve months. If it is more frequent, either there is a leak in the system or the outdoor furnace is boiling because of improper operation or maintenance (see Troubleshooting Section in the Owner’s Manual). Be sure to locate and repair the problem immediately. Frequently adding water can cause deterioration in the water jacket. Each time water is added, refer to Water Quality and Maintenance in the Owner’s Manual for water testing procedures. If indicated by test results, add MolyArmor 350 as required. Deterioration due to improper operation and/or maintenance is not covered by warranty.

9. Send in Water Sample
See Water Quality and Maintenance for more information.
Wood Selection and Preparation

For the best results, it is best to burn seasoned split wood. However, it may be possible to burn some unsplit wood with the split wood depending on quality, size, moisture content and wood type. Properly seasoned wood has a moisture content of 20% or less. It is darker, has cracks in the end grain, and sounds hollow when smacked against another piece of wood. Most wood needs to be split to dry down to 20% within a year. Wood between 4" and 8" (10 and 20 cm) in diameter works well in most cases. Pieces of wood that are too large can reduce output capacity because they burn slower.

- Seasoned wood burns more efficiently, minimizes the amount of creosote formation, reduces emissions and extends the life of the outdoor furnace.

- Maintain a quantity of smaller, drier pieces of wood for relighting the fire and for other situations when larger pieces of wood don't work as well.

- The larger the heat load on the outdoor furnace, the drier the wood needs to be in order to maintain an adequate glowing coal bed.

Following are some reasons that green, unseasoned wood should not be used:

- Green wood contains about 50% moisture by weight. Energy is required to heat the wood and evaporate the moisture - energy which could have been used to provide heat. The illustration below shows that burning drier, seasoned wood provides more energy for heating compared with burning green, unseasoned wood that uses more energy to evaporate the moisture and provides less energy for heating.

- Unseasoned wood provides less heat, resulting in more condensates (moisture) in the firebox and increased wood consumption.

- Increased moisture in the firebox can result in corrosion.

- Unseasoned wood causes reduced performance, lower combustion rates and lower heat output.

- The full heating potential is unlikely to be achieved with unseasoned wood.

- Burning wood with an excessively high moisture content increases maintenance requirements and can lower the service life of the outdoor furnace.

- The higher the moisture content of the wood being burned, the harder it is to maintain a glowing coal bed because it burns more slowly.

NOTE: Do not store wood within the outdoor furnace installation clearances or within the spaces required for fueling, ash removal and other routine maintenance operations.
FIRING THE FURNACE

NOTE: Before firing the outdoor furnace for the first time, make sure the proper amount of MolyArmor 350 has been added and the water level is 1” below the full mark on the sight gauge.

CAUTION
Do not burn plastic, garbage, treated wood or fuels not listed for this outdoor furnace.

The outdoor furnace is equipped with a digital temperature controller that closes the outdoor furnace damper when the water temperature reaches the controller's setting. The setting can be adjusted so the outdoor furnace will operate with a water temperature within a range of 150°F-195°F.

CAUTION
If the water in the outdoor furnace boils, be sure to check the water level and restore to full. Add MolyArmor 350 (p/n 2900630) as needed (see Water Quality and Maintenance).

NOTE: At the completion of the initial start-up procedures, the gas/oil burner should be cycled for a test run. During the test run, set all burner settings according to the instructions and settings in the burner manual. If converting to a different type of gas (i.e., LP to NG or NG to LP), install only the manufacturer's certified kit.

1. To cycle the outdoor furnace with wood for the first time, turn the control switch to the Wood position; then place dry kindling wood near the front of the firebox. Use a small amount of paper to light fire or operate the dual fuel burner in the Clean Start mode.

2. Add larger pieces of wood to the fire but do not fill the firebox completely.

3. When the water temperature reaches the controller setting (185˚F) and the damper closes, let the outdoor furnace cycle a few times to be sure it is operating properly; then add more wood.

4. Adjust your fill schedule so that a minimum amount of unburned wood and coals remain. This will make it easier to stir the ashes along the sides of the firebox and to pull coals forward (see Firebox Maintenance).

NOTE: Be sure to clean and inspect the firebox as outlined in Section 3.

CAUTION
Failure to clean the firebox as indicated will result in excessive corrosion.

A reading of 212°F or above indicates either a low-water condition or a malfunctioning temperature controller or snap disc (unless the door is open or not sealing properly). If the condition persists and the water level is correct, call your dealer for service.

FILLING THE FIREBOX

WARNING
Keep your face away and stay as far away as possible from the firebox door area when opening the door.

1. Unlatch the door; then stay as far away as possible as the firebox door is opened as smoke and hot gases escaping through the firebox door opening could ignite. From a safe distance, observe the fuel load.

Prior to filling the firebox with wood, always pull the hot coals forward to the draft area (front and center of the firebox). With the hot coals pulled to the draft area, added wood ignites faster because combustion air is forced through the hot coals and into the newly added wood. If the coals are pushed to the back, a less efficient burn will result. If needed to extend the burn time, the outdoor furnace may be completely filled.

2. If necessary, clean the firebox of excess ashes and/or crusty deposits.

3. Pull the hot coals forward to the draft area (front and center) of the firebox.

WARNING
Use extreme care if adding wood when wood or coals are already present. Very hot gases may be coming out of the firebox door opening.

4. Load the firebox with wood being careful not to be pinched between the wood and any part of the outdoor furnace.

5. If operating in Clean Start or Backup mode, do not pack wood between the log guard and the end of the fire tube (see Fig. 45).
When adding wood to the firebox, be careful not to get pinched between the wood and the door frame or any part of the outdoor furnace. Use extreme care with large pieces of wood that may be difficult to handle.

5. Close and secure the firebox door. Do not use the firebox door to ram wood into the outdoor furnace. Do not operate the outdoor furnace with the firebox door open. Combustion in the firebox cannot be controlled if the firebox door is left open or unsecured. If the firebox door is left open, an uncontrolled burn will result. To return to a controlled burn, close and secure the door.

CLEANING AND INSPECTING

WARNING

Stay as far away as possible from the door area when opening the door.

1. Open the door to the firebox and if necessary, clean the front area of the firebox of excess ashes or deposits.

NOTE: Use extreme care when accessing the firebox to clean out ashes. Hot gases could be released out of the firebox door.

2. Close and secure the firebox door. Do not operate the outdoor furnace with the firebox door open. Combustion in the firebox cannot be controlled if the firebox door is left open or unsecured. If the firebox door is left open, an uncontrolled burn will result. To return to a controlled burn, close and secure the door.

NOTE: Creosote is an accumulation of combustion by-products on the surfaces of wood-burning appliances. Twice a month during the heating season, inspect for excessive creosote buildup on the firebox walls, flue and chimney. If present, the buildup should be removed for proper operation and fire safety. Creosote, if ignited in the chimney, results in an extremely hot chimney fire. In case of a chimney fire, close the firebox door.

ADJUSTING WATER TEMPERATURE

The high water temperature setting can be adjusted anywhere between a range from 150°F-195°F. At 10°F less than the temperature setting (10°F being the thermostatic differential), the controller will start the draft cycle by opening the damper (and activating the optional draft inducer, if so equipped). When OUT is indicated on the display, the outdoor furnace is calling for heat.

The controller has been preset at the factory to 185°F. To change the setting, use the following procedure.

NOTE: The high water temperature can be set only between 150°F and 195°F. It is not recommended to set the temperature below 165°F.

1. Press the SET button on the temperature controller. "SP" will appear in the display.

2. Press SET again to display the current setpoint temperature. The factory preset is 185°F.

3. Press the UP or DOWN button until the desired value is displayed. This setting can only be set between 150°F and 195°F.
NOTE: The dual fuel burner will not operate properly if the temperature controller is set below 165°F.

4. Press SET to save the setting. "SP" will appear.

5. To exit the programming mode, either press the SET and DOWN buttons at the same time or wait one minute and the controller will automatically exit.

MODES OF OPERATION

Fig. 48

Classic Dual Fuel outdoor furnaces are equipped with a four-position switch (located to the left of the side light on the outdoor furnace side panel) for selecting the operational mode of the outdoor furnace. The switch positions are WOOD, CLEAN START, DUAL FUEL BACKUP and FUEL OIL/LP/NG.

NOTE: The four-position switch must stay in the WOOD position until the power burner is installed. The solenoid opens the wood combustion damper in the WOOD, CLEAN START, DUAL FUEL BACKUP modes. When the FUEL OIL/LP/NG mode is used, the wood combustion damper stays closed.

A safety interlock switch is built into the firebox door so that if the firebox door is opened when the burner is operating, the burner will immediately shut down.

Wood

In Wood mode, the outdoor furnace operates burning wood only in the firebox. The fire must be maintained in the firebox in order for the outdoor furnace to heat. On a call for heat, the damper opens and the optional draft inducer fan (if installed) turns on. Maintain adequate coals in the firebox for restarting the fire when loading the outdoor furnace with wood.

Clean Start™

The Clean Start mode operates the auxiliary burner at the beginning of the burn cycle to provide an immediate high-temperature combustion, helping to reduce visible emissions and creating a secondary combustion of unburned gases. The amount of time the auxiliary burner operates may be preset by the operator. The timer (located within the side panel) should be set between 5 and 7 minutes. The timer may be set for a longer duration (up to 15 minutes) if the wood is less seasoned than desired. The Clean Start mode also provides Dual Fuel backup if the wood load is depleted.

Dual Fuel Backup

In the Dual Fuel Backup mode, the outdoor furnace will operate by burning wood in the firebox. However, if there is a call for heat and the wood load is depleted, the outdoor furnace will activate the auxiliary burner until the firebox is reloaded with wood to sufficiently maintain heat. Dual Fuel Backup mode will engage when the water temperature in the furnace drops to 145°F and will shut off once the water temperature reaches 160°F.

Fuel Oil/LP/NG

In this mode, the outdoor furnace will operate the auxiliary burner to burn fuel only. Operating temperatures are set with the digital controller.

OPERATING OPTIONAL BURNER

The burner manufacturer’s installation and operation manual is included with each type of burner supplied by Central Boiler. For specific operating instructions not included in this manual, refer to those instructions. All burner service work must be provided by a qualified serviceman according to the specifications and schedule in the burner manual.

Use only the fuel designated on the burner rating plate and stated in the gas or oil burner Operator’s Manual. Also, if restarting after an ignition failure, purge the firebox of any excess fuel (or LP or NG) prior to attempting to restart the burner. If using fuel oil, use heating oil (either #1 or #2) of the proper viscosity for the coldest anticipated operating temperatures.

WARNING

DO NOT USE GASOLINE, CRANKCASE OIL OR ANY OIL CONTAINING GASOLINE. DO NOT ATTEMPT TO START THE BURNER WHEN EXCESS OIL HAS ACCUMULATED OR WHEN THE BURNER IS HOT.
SECTION 3 – MAINTENANCE INSTRUCTIONS

PREVENTIVE MAINTENANCE SCHEDULE

Regular maintenance and inspections can help extend the life of your outdoor furnace and prevent high-cost repairs. This table is meant to serve as a general guideline until you become acquainted with how the outdoor furnace operates with your specific application.

<table>
<thead>
<tr>
<th>OPERATION</th>
<th>BEFORE first operation</th>
<th>Daily</th>
<th>Weekly</th>
<th>Monthly</th>
<th>See Section Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Check water level.</td>
<td></td>
<td>![]</td>
<td>![]</td>
<td>![]</td>
<td>![] 3-1</td>
</tr>
<tr>
<td>Completely remove ash.</td>
<td></td>
<td></td>
<td>![]</td>
<td>![]</td>
<td>![] 3-6</td>
</tr>
<tr>
<td>Inspect firebox door seal.</td>
<td></td>
<td></td>
<td>![]</td>
<td>![]</td>
<td>![] 3-4</td>
</tr>
<tr>
<td>Check vent cap.</td>
<td></td>
<td>![]</td>
<td>![]</td>
<td>![]</td>
<td>![] 3-2</td>
</tr>
<tr>
<td>Stir ash and pull toward front of firebox.</td>
<td></td>
<td>![]</td>
<td>![]</td>
<td>![]</td>
<td>![] 3-3</td>
</tr>
<tr>
<td>Scrape bottom of firebox.</td>
<td></td>
<td></td>
<td>![]</td>
<td>![]</td>
<td>![] 3-7</td>
</tr>
<tr>
<td>Lubricate door handle.</td>
<td></td>
<td></td>
<td>![]</td>
<td>![]</td>
<td>![] 3-8</td>
</tr>
<tr>
<td>Check pH and moly levels of water.</td>
<td></td>
<td>![]</td>
<td>![]</td>
<td>![]</td>
<td>![] ![] 3-9</td>
</tr>
<tr>
<td>Inspect, clean and adjust auxiliary burner.</td>
<td></td>
<td></td>
<td>![]</td>
<td>![]</td>
<td>![] 3-7</td>
</tr>
<tr>
<td>Inspect for crusty deposits on walls and top of firebox and scrape if present.</td>
<td>![]</td>
<td></td>
<td>![]</td>
<td>![]</td>
<td>![] 3-7</td>
</tr>
</tbody>
</table>

NOTE: Check daily for build-up of creosote until experience shows how often cleaning is necessary.

- **A** When the outdoor furnace is new, daily for the first week.
- **B** Twice a week.
- **C** After one month, then midway through the heating season.
- **D** Weekly until interval for your application can be determined.
- **E** When new, after three months, then every six months thereafter.
- **F** Refer to **Water Quality and Maintenance**
Section 3 - Maintenance Instructions

CAUTION
Use only genuine Central Boiler Parts and Accessories if it ever becomes necessary to replace any component of the outdoor furnace.

ROUTINE MAINTENANCE
Routine inspections and maintenance are essential to the proper operation and longevity of the outdoor furnace. The items indicated in the preventive maintenance schedule are intended to serve as a guideline. Actual intervals between inspections and maintenance may vary depending on a number of factors, including your heat load requirements, type of wood used, and outdoor temperatures.

NOTE: Proper firebox maintenance is essential to the longevity of the outdoor furnace.

CAUTION
Do not burn plastic, garbage, treated wood or fuels not listed for this furnace.

NOTE: Chloride or sulfurous gases can be generated if plastic or rubber is burned and will mix with the moisture from the wood to form sulfuric or hydrochloric acids in the firebox, creating excessive corrosion.

3-1. Water Level
Open the sight gauge valve. The sight gauge tube will fill to indicate the level of water in the outdoor furnace. Be sure to close the sight gauge valve after checking water level. The sight gauge valve and tube will drain when the valve is closed.

3-2. Vent Cap
Check that the vent cap fits loosely on the vent opening.

WARNING
Vent cap must fit loosely on the vent opening (Fig. 1). Do not force the cap down or try to seal it tightly onto the vent pipe. Do not extend or restrict the vent pipe or opening. DO NOT ALLOW THE OUTDOOR FURNACE TO BE PRESSURIZED.

3-3. Stir Ash
Stir the ashes in the firebox and pull them forward to prevent the ashes from sealing in moisture on the bottom and along the edges. It is especially important to scrape the walls and the four corners at the ash line and below. If this maintenance operation is not performed as directed, deterioration can result from the moisture trapped between the ashes and the steel.

1. Remove any heavy or solidified ashes. When ashes build up to either the door frame in the front or the top of the beveled ash pan of the firebox, they should be removed. A hoe, ash rake and shovel for this procedure may be purchased from your Central Boiler dealer. Leave enough ashes and coals to relight the fire.

WARNING
When cleaning the outdoor furnace, be careful not to spill any hot ash outside of the noncombustible container.

2. Disposal of ashes - Place ashes in a metal container with a tight-fitting metal lid. It can take many days before the ashes are completely cooled. Other waste should not be placed in this container.

3. Each time the ashes are cleaned out, inspect the door rope (see Section 3-5) to make sure it is sealing properly.

3-4. Firebox Door Seal
The firebox door rope must be in good condition to ensure an airtight seal. Look for wear spots or portions of the door rope lacking an indentation from the firebox door. The door rope should have a uniform indentation in it all the way around.

1. Open the firebox door. One way to check that the door rope is sealing all the way around the firebox door is to insert a piece of paper similar in size and shape to a dollar bill in several locations around the perimeter of the door and then to close and latch the firebox door.

2. At each location, pull on the piece of paper. If it pulls out easily, either the door rope is sealing improperly and needs to be replaced, or the firebox door needs to be adjusted.

3. Check that the damper is properly sealing when closed. Normal wear over time can create a groove or dent where the damper lid strikes the casting when closing. Replace the damper if it is not sealing properly.
4. Inspect the door casting and heat shields. If the door casting is not cracked through or broken, allowing air to leak in, the door casting should not need to be replaced. Like the damper, it is normal for heat shields to show wear over time. The heat shield should be replaced if it is no longer providing coverage of the casting beneath the heat shield.

NOTE: If the outdoor furnace has been improperly operated with the door partially open, close the door and allow the outdoor furnace to cycle normally for 1 hour before inspecting the door for proper sealing.

3-5. Chimney
NOTE: Creosote is an accumulation of combustion by-products on the surfaces of wood-burning appliances. Twice a month during the heating season, inspect for excessive creosote buildup on the firebox walls, flue and chimney. If present, the buildup should be removed for proper operation and fire safety. Creosote, if ignited in the chimney, results in an extremely hot chimney fire. In case of a chimney fire, close the firebox door.

1. If the flue passageway behind the baffle becomes plugged, it must be cleaned.
2. Inspect the chimney for excessive buildup of creosote and clean, if necessary.
3. On 4030 models only, inspect the chimney restrictor for excessive buildup of creosote and clean, if necessary. Make sure the chimney restrictor is positioned 11" in from the end of the chimney tee as shown in Fig. 39.

3-6. Completely Remove Ash
1. Remove all ashes from the firebox.

CAUTION
Always wear the appropriate personal protective gear when cleaning ashes from the firebox.

2. Use a wire brush and small scraper to clean the firebox, side walls, back wall and ash pan. Use a light to inspect for corrosion. If corrosion is present, contact your dealer. Lubricate the solenoid plunger with a light petroleum distillate (e.g., WD-40 or equivalent).

2. Disposal of ashes - Place ashes in a metal container with a tight-fitting metal lid. It can take many days before the ashes are completely cooled. Other waste should not be placed in this container.
3. Each time the ashes are cleaned out, inspect the door rope (see Section 3-5) to make sure it is sealing properly.

3-7. Scrape Bottom of Firebox
Scrape the bottom 12 inches of the firebox clean. Allow the fire to get very low; then move the coals to one side of the firebox. Use a hoe to clean the other side. Move the coals to the other side and finish cleaning the firebox, leaving some ashes with the live coals. Pull the coals and ashes to the draft area (front and center of the firebox). When the furnace is filled, the coals remaining in the firebox will light the fire.

NOTE: Regular cleaning of the firebox, particularly at the ash line and below, reduces the possibility of corrosion.

The top of the firebox and walls of the firebox above the ash line should be scraped clean if large, thick, dry or crusty deposits are present. A thin, tar-like layer of creosote does not cause any problems in the operation of the furnace.

3-8. Door Handle
Lubricate the door handle with a light petroleum distillate (e.g., WD-40 or equivalent).

3-9. Auxiliary Burner
Periodically during the heating season (according to the burner manufacturer's instructions), and at the end of the heating season, the burner should be inspected, cleaned and adjusted (as necessary). Failure to properly maintain the burner may result in inefficient operation. After any maintenance, be sure to install and secure the burner cover to keep the burner and controls from exposure to the elements. Refer to the burner's instructions for all maintenance items and adjustments.
WATER QUALITY AND MAINTENANCE

Send in Initial Water Sample
Your owner’s packet contains a Water Sample Kit for submitting an initial water test. Additional Water Samples Kits are available from your Central Boiler dealer.

INITIAL WATER SAMPLE: You are required to submit an initial water sample within 30 days of purchase of your outdoor furnace. EXCEPTION: if your outdoor furnace is not being installed within 30 days of purchase, you must email Central Boiler (service@centralboiler.com) with an estimated installation date, your name and your furnace serial number. When the furnace installation is complete, send the water sample within 10 days of the initial fill.

TO CHECK STATUS OF YOUR WATER SAMPLE:
Check the status of your water sample at:
CentralBoiler.com/w25
You will need your serial number and postal code. Please allow 2-3 weeks for results to be available.

Annual Water Sample
ANNUAL WATER SAMPLE: You are required to submit a water sample yearly prior to the anniversary date of your initial installation. Record the anniversary date below:

DATE OF INSTALLATION

Water Samples
Maintaining the corrosion inhibitor at a proper level is imperative to preventing corrosion failures. To qualify for the 25 year warranty, you must follow the instructions in the Owner’s Manual and the Installation and Initial Water Treatment Guide concerning initial water treatment and maintenance. When the outdoor furnace is initially put into service, and once a year after that, you are required to submit a water sample to confirm proper maintenance and water treatment. No warranty claim can be approved unless the outdoor furnace registration and the required water tests verifications are on file at Central Boiler.

NOTE: It is your responsibility as owner to ensure that your water sample information is accurate and that you submit your samples on a timely basis as required by the warranty for your stainless steel outdoor furnace. Failure to do so will result in a one year warranty.

SYSTEM MAINTENANCE
An important part of outdoor furnace maintenance is controlling the quality of the water in the outdoor furnace.

Water Test Kits and Test Results

<table>
<thead>
<tr>
<th>DATE</th>
<th>pH LEVEL</th>
<th>MOLY LEVEL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Record the results of pH and Moly level tests in the table above. If additional space is needed, record on a separate sheet of paper.

It is very important to keep record of water test results (including the date, pH and Moly level). The pH and Moly test strips and indicator have a shelf life of approximately two years that can affect their accuracy. Test kits should be stored in a dry area at room temperature to obtain maximum accuracy over a longer period of time.

Biological contamination can occur if the furnace is not heated up to 185˚F immediately after filling it with inhibitor and water as directed.

NOTE: ANY time water is added to the system, it is extremely important to bring the water temperature up to operating temperature (185˚F) as soon as possible, even if it is during the off-season. Failure to bring the water in the system up to operating temperature immediately after filling the system can allow bacteria present in the water to multiply and may increase the potential for corrosion in the system.

If the test indicates a significantly lower-than-recommended pH level (below 8.0), add MolyArmor to increase the pH level.
POST HEATING SEASON MAINTENANCE

The water should be left in the outdoor furnace if the outdoor furnace is not being used for an extended period of time.

1. Refer to the Preventive Maintenance Schedule for a list of operations to perform.
2. Shut off the power supply to the outdoor furnace.
3. Place a cover over the chimney to keep rain from entering the outdoor furnace. Clean and oil the chimney flue to the firebox.

Flushing the System

If the system water is brown or orange, it is an indication that the MolyArmor 350 level has not been maintained and corrosion is present in the water jacket. Sludge Conditioner (p/n 166 or 1660) can be used by circulating the recommended amount through the furnace for one week to help clean some of the corrosion from inside the water jacket.

Recommended amounts are: CL 4030, 1/2 unit; CL 5036 or CL 6048, 1 unit; CL 7260, 2 units. Note that 1 unit = 1/2 gallon if using p/n 1660 or 1 unit = 1 gallon if using p/n 166. Use one unit of Sludge Condition per 200 gallons of system water.

The water jacket should then be thoroughly flushed and the system refilled with the proper amount of MolyArmor 350. Be sure to test the system water to verify the proper amount of MolyArmor 350.

1. De-energize the pumps and close the supply and return valves on the outdoor furnace. Remove the inspection panel and insulation covering the drain to gain access to the drain. Remove the cap and connect a hose to the drain.

NOTE: Refer to General Installation Information for information on draining treated system water.

2. Open the drain to drain the system; then flush the top of the firebox and bottom of the water jacket beneath the firebox using a wand placed in the vent (Fig. 47).

CAUTION

Completely clean out the firebox before draining water from the outdoor furnace.

3. Close the drain valve securely and replace the cap on the drain after flushing the outdoor furnace.

4. Fill the furnace following the procedure in Water Quality and Maintenance making sure to operate the pump(s) to thoroughly mix the MolyArmor 350.

5. Insulate the area using either canned urethane foam insulation or a mat of fiberglass insulation.

6. Install the inspection panel and secure with self-tapping screws.
SECTION 4 – OWNER SERVICEABLE ITEMS

NOTE: If any of these items are under warranty, remember that the warranty covers only the cost of the replacement part. Labor is not covered.

NOTE: Use only genuine Central Boiler parts and accessories if it ever becomes necessary to replace any component on the outdoor furnace.

FIREBOX DOOR CAM LOC ADJUSTMENT
If the firebox door rope has been replace and it is not sealing properly, the firebox door may need to be adjusted to close more tightly. When adjusting the firebox door, make sure it is not adjusted too tightly as damage to the firebox door, frame or door rope may result.

1. Loosen the adjustment nut (two nuts on the dual Cam Loc® style door) and slide the lock assembly in slightly toward the furnace; then tighten securely (see Fig. 50). On the dual Cam Loc doors, make sure to adjust both the top and bottom for equal pressure when latched.

FIREBOX DOOR SEAL ROPE
The firebox door seal must be in good condition to ensure an airtight seal. If replacement is necessary due to the firebox door seal becoming damaged or brittle, use the following procedure:

1. Disconnect power to the furnace. Open the firebox door.

WARNING
Remove all wood, coals and ash from the firebox and allow the outdoor furnace to thoroughly cool down before performing maintenance.

2. Using a scraper, remove the firebox door seal rope and clean any remaining silicone adhesive from the groove. Any residue left in the groove will interfere with the new seal.

4. Apply a 1/4” (6 mm) diameter bead of silicone sealant into the entire firebox door seal groove.

5. Starting at the center of the top side of the firebox door, insert the new door seal rope into the groove, pressing it firmly into the bead of silicone sealant. Make sure the firebox door seal rope is not stretched as it is pressed into the corners. Force the firebox door seal rope out to fill in the corners as shown in Fig. 51.

6. When the seal has been pressed into the groove all the way around the firebox door, cut the end of the rope about one inch (2.5 cm) longer than required and press it tightly against the beginning end of the rope.

7. Close the firebox door.

LIGHT BULB
A 40-watt appliance type bulb is installed in each of the fixtures on the outdoor furnace. Do not install a bulb in excess of 60 watts.

1. Disconnect power to the furnace.

2. Remove the two screws securing the clear plastic lens over the light.

3. Replace the bulb.

4. Ensure that the gasket is aligned correctly; then install the plastic cover and secure with two screws.

SOLENOID
Before replacing the solenoid, check the following items:

• Check to be sure there is incoming power to the furnace.

• Check inside the control panel to see if the fuse has blown. If the fuse is blown, check the draft opening to be sure the linkage operates freely and that there are no obstructions to the door; then replace the fuse.
• To test the solenoid with a multimeter, turn the Power Disconnect Switch to the OFF position and refer to Testing Solenoid.

• If solenoid still does not operate, turn the Power Disconnect Switch to the OFF position and replace the solenoid (see Replacing Solenoid).

TESTING SOLENOID

WARNING
Do not attempt service on the solenoid without first disconnecting the electrical power at the main power source.

1. Remove the screws securing the draft enclosure cover; then remove the cover.

CAUTION
Solenoid may be hot.

2. Carefully disconnect the two wire leads connected to the left side of the solenoid by gently pulling and moving them from side to side.

3. Using a multimeter set to Ohms, test the solenoid's resistance by touching the meter leads to the solenoid terminals.

4. If the multimeter reading is between 15 and 30 Ohms, the solenoid is good. If the multimeter reading is less than 15 Ohms or more the 30 Ohms, the solenoid is faulty and should be replaced.

5. If the solenoid is good, carefully attach the wire leads onto the solenoid terminals (white wire connected to the upper terminal).

6. Install the cover and secure with the screws.

7. Turn the Power Disconnect Switch to the ON position.

REPLACING SOLENOID

WARNING
Do not attempt service on the solenoid without first disconnecting the electrical power at the main power source.

1. Remove the screws securing the draft enclosure cover; then remove the cover.

CAUTION
Solenoid may be hot.

2. Carefully disconnect the two wire leads connected to the left side of the solenoid by gently pulling and moving them from side to side.

3. Remove the top cotter key of the linkage.

4. While supporting the solenoid with your hand, remove the top two solenoid mounting screws and loosen the bottom two.

5. Lift up on the solenoid until it clears the screw heads and remove.

6. Place the new solenoid into position and lightly secure with the screws. Adjust the solenoid up or down until the solenoid plunger free length is between 15/16" and 1"; then tighten the screws securely. Connect the solenoid to the linkage with the cotter pin. Slightly spread the legs of the cotter pin. Check that the spring-loaded linkage and damper door are not binding and that the spring is not broken or missing.

7. Carefully attach the wire leads onto the solenoid terminals (white wire connected to the upper terminal).

8. Install the cover and secure with the screws.

9. Turn the Power Disconnect Switch to the ON position.

NOTE: If the solenoid rattles during operation, the alignment between the solenoid and the lift tab is incorrect. To align the solenoid and lift tab, loosen the four solenoid mounting screws and move the solenoid until the solenoid plunger aligns with the lift tab. Secure the solenoid; then make sure it operates smoothly.

Fig. 52

TEMPERATURE CONTROLLER

1. Disconnect the electrical power at the main power source to the outdoor furnace; then open the control panel door. Remove the screws securing the inner door panel; then remove the panel.
WARNING
Do not attempt service inside the electrical control panel without first disconnecting the electrical power at the main power source.

2. Carefully label each of the wires connected to the temperature controller according to the numbered connections identified on the top of the controller.

3. Using a small screwdriver, loosen the screws securing each of the wires; then pull the wires out of the controller.

4. Depress the tabs on the side of the controller mounting strap; then slide the strap off the controller. Remove the controller from the control panel.

5. Place the new gasket onto the controller. Slide the new controller into position (making sure it is positioned upward) in the control panel; then secure with the mounting strap.

6. Slide each of the labeled wires into their proper positions on the controller; then tighten each of the screws securely.

7. Place the inner door panel into position on the door and secure with the screws.

8. Close and secure the door. Connect power to the outdoor furnace.

WATER TEMPERATURE SENSOR

To test the water temperature sensor using a multimeter, see Testing Water Temperature Sensor. If the sensor needs to be replaced, see Replacing Water Temperature Sensor.

TESTING WATER TEMPERATURE SENSOR

1. Disconnect the electrical power at the main power source to the outdoor furnace; then open the control panel door. Remove the screws securing the access box panel; then remove the panel.

2. Disconnect the sensor wires from the controller.

3. Using a multimeter set to Ohms, touch the meter leads to the wires disconnected from the controller. A reading of 1000 Ohms or less indicates the temperature sensor is good; a reading of more than 1000 Ohms indicates the temperature sensor is faulty and should be replace.

4. Firmly press the new sensor into the well. Secure the sensor in place following the instructions provided with the new sensor.

5. Connect the sensor wires to the controller.

6. Place the access box panel into position and secure with the screws.

7. Close and secure the door. Connect power to the outdoor furnace.
SECTION 5 – TROUBLESHOOTING

A. OUTDOOR FURNACE DOES NOT HEAT
(BUILDING IS LOSING TEMPERATURE)

1. Out of wood - Check firebox to see if fire is out. Add wood as necessary. Use good quality wood since poor quality wood will have very short burn times.

2. Circulation valve(s) closed - Be sure all valves in the system are open.

3. Circuit breaker off - Check the circuit breaker that supplies power to the outdoor furnace.

4. Solenoid not operating properly - Disconnect power to the furnace; then check the fuse in the control panel. If fuse is blown, check damper door for obstructions and for free movement. Be sure damper door works freely; then replace the fuse. Check the solenoid plunger free length. With the damper door fully closed, the correct length is between 15/16" and 1" (see Fig. 52). Adjust if necessary, but do not exceed 1". Be sure that the damper door (when activated by the solenoid) does not contact the louvered cover. Lubricate or adjust as necessary. Check that the spring-loaded linkage and damper door are not binding and that the spring is not broken or missing.

5. Circulation pump(s) not operating - Check that circulation pumps are operating. If not, disconnect power to the pump. Close valves at the pump. Disassemble the pump and try to turn the pump shaft. If the shaft is stuck, replace the pump cartridge. Replace only the cartridge whenever possible. If necessary, replace the pump. Follow instructions supplied with the pump.

6. Air in system - Check for air in the water lines or heat exchangers. If you hear a gurgling sound in a heat exchanger, air is present in the system. Shut off the pump, wait 15 seconds and start the pump. If it is necessary to force air from lines, refer to Initial Start-up Procedures.

7. Outdoor furnace exhaust obstructed - Check furnace exhaust for obstructions by observing the amount of smoke coming out of the chimney with the firebox door slightly ajar. If smoke seems very restricted, remove the firewood and hot coals; then check the chimney (top and bottom) and behind the baffle for obstructions. On 4030 models only, check that the chimney restrictor is not plugged with creosote and that it is positioned 11" in from the end of the chimney tee.

8. Building(s) poorly insulated or uninsulated - Poorly insulated or uninsulated buildings, buildings with uninsulated or poorly insulated ceilings, or a lack of proper insulation under radiant flooring can cause excessive fuel consumption and/or heating problems.

9. Supply and return lines installed incorrectly - Make sure the hot supply water line is connected to the correct fitting on the outdoor furnace and heat exchanger.

10. Circulation pump(s) installed backwards - Check that pump flow direction is correct. If not, shut off power to pump. If the flow is not in the correct direction, disconnect pump from water line and reverse pump mounting to correct flow direction. If the pump is not mounted on the outdoor furnace, check for proper pump mounting location (see Fig. 17-18).

11. Underground supply and return lines insulated poorly - Heat loss from poorly insulated underground supply and return lines is often indicated by an unusually high amount of snow melting above the lines when the ground temperature is 10º F or colder.

12. Supply and return lines uninsulated - Uninsulated supply and return lines in areas that are not intended to be heated (unheated crawl spaces, etc.) may cause excessive heat loss. Insulate the supply and return lines.

13. Poor water quality - Water with high amounts of solids, sand or dirt can create deposits inside the wall of heat exchanger components, reducing the amount of heat output. If this condition is suspected, contact your Central Boiler dealer.

14. Burner not operating properly - Troubleshoot burner according to manufacturer's instructions. Ensure the firebox door is closed and the door switch is operating properly.

B. OUTDOOR FURNACE IS OVERHEATING

1. Air entering through the door - Make sure the firebox door is properly latched and check the condition of the door rope. If it is not sealing properly (indicated by a uniform indentation in the rope), replace the rope. If door does not close tightly, adjust using the appropriate procedure (see Owner Serviceable Items).

2. Air entering through the damper - Check to be sure the damper is operating correctly as explained in section A.4. Be sure the damper closes all the way and that no obstructions are present. The damper can wear a groove or the bracket can loosen over time. If that is the case, the damper may need replacement and/or the bracket may need to be adjusted and tightened.

If the solenoid is sticking, lubricate with silicone spray or a light petroleum distillate (WD-40 or equivalent). Check linkage for binding, or for a missing or broken spring.
NOTE: If the water in the outdoor furnace boils, identify the cause and correct immediately. The outdoor furnace will not typically be damaged by boiling unless it reduces the water level more than 1” below the full mark on the sight gauge. If water boils, restore water level to full and add MolyArmor 350 as needed. If water is added frequently it will cause deterioration in the water jacket which will reduce the life of the outdoor furnace.

3. **Temperature controller set incorrectly** - The temperature controller should not be set above 195°F.

4. **Water is not circulating** - The pump should run continuously and water needs to circulate continuously through the supply and return lines to keep water temperature uniform in the outdoor furnace.

5. **Circulation valve(s) closed** - Be sure the proper valves in the system are open to allow circulation.

C. SOLENOID DOES NOT OPERATE

1. **Fuse blown** - Check the fuse. Check damper and solenoid area for obstructions or damage. Be sure the damper door operates properly; then replace the fuse.

2. **Solenoid not operating properly** - Solenoid may be damaged. If so, be sure to check the linkage for free movement and for creosote buildup between the damper door and draft opening. Replace the solenoid if burned out or stuck in the open position. Check that the spring-loaded linkage and damper door are not binding and that the spring is not broken or missing. The solenoid is an owner serviceable item (see instructions for replacement in Section 4).

D. FREQUENT PUMP TROUBLE OR POOR WATER CIRCULATION

1. **Pump mounted incorrectly** - If the pump is not mounted on the outdoor furnace, it must be mounted at a minimum of four feet lower than either the top water level in the outdoor furnace or the highest point of the hot supply lines (see Fig. 19).

2. **Deposits in water lines/heat exchanger walls** - If water high in silica or other mineral content has been used, material deposits may build up on the insides of the supply and return lines and on the heat exchanger walls. If this occurs, the system will need to be drained and then cleaned using Sludge Conditioner (p/n 166). The system must then be refilled with the proper amount of MolyArmor 350 (p/n 2900630) and fresh water.

E. ERRATIC TEMPERATURE READING ON GAUGE

1. **Return water too cold** - Water circulation may be too slow. The return water should be no more than 20°F-25°F less than the hot supply water. If the water returning to the outdoor furnace is too cold, it may cause erratic temperature readings. Check for partial air lock or install larger pump.

F. BURNING AN EXCESSIVE AMOUNT OF WOOD

1. **High volume water heating** - High volume water heating (e.g., car wash, swimming pool, etc.) will require high wood consumption.

3. **Air entering through door** - See item 1 of Outdoor Furnace is Overheating.

4. **Excessive draft** - If a very tall extension is added to the chimney, the increased draw through the draft may cause excessive wood consumption. Decreasing the draft opening may increase efficiency and reduce wood consumption.

5. **Supply and return line heat loss** - If supply and return lines are buried in a wet, low-lying area, there may be a large heat loss which would greatly increase wood consumption.

6. **High heat demand** - Concrete slabs (with radiant heat) that are poorly insulated or are exposed to water or cold outside temperatures will require increased wood consumption (see Hydronic Installations section). Bringing a concrete slab up to temperature the first time will take a considerable amount of time and wood; once warm, wood consumption will be reduced if the concrete slab and building are insulated properly. The following will also have a high heat demand: poorly insulated buildings, buildings with large amounts of glass windows/doors, buildings with overhead doors, greenhouses, uninsulated crawl spaces, outdoor air infiltration and air leaking through foundation.

CONTACT A QUALIFIED CENTRAL BOILER DEALER FOR FURTHER ASSISTANCE OR TO SCHEDULE A SERVICE CALL.
SECTION 6 – GENERAL INFORMATION

Make note of these precautionary statements also found on the furnace.

DO NOT BURN JUNK

 Burning garbage causes damage to components of wood burning appliances.

Refer to your Owner’s Manual.

BURN RESPONSIBLY

Preserve Your Right to Burn Wood

- Before installing, consider the direction that the chimney exhaust will travel with prevailing winds.
- Before operating, install a chimney that is at least 2 feet higher than the peak of any residence not served by the furnace within 300 feet of the furnace. Proper chimney height will aid in disposing of the chimney exhaust. Chimney height may need to be greater than the above minimum requirements to prevent exhaust from coming a house. The outdoor wood furnace must be installed in accordance with the manufacturer’s recommendations and, in accordance with applicable codes and regulations, wherever more stringent. Refer to your Owner’s Manual.

- ONLY burn the proper fuel specified.
- DO NOT create a nuisance. Be certain your chimney exhaust is not adversely affecting neighbors. Creating a nuisance may affect your right to burn wood. If any contact with chimney exhaust arises, take immediate action to make the issue.

- Proper & clean ashes in a metal container with a cover.
- It is true that lighting a fire can be more of an art than a science. You may need to work with your chimney to achieve best results. Many factors can have a significant effect both as items of fire, moisture content, wood storage, etc. Over time, you will become familiar with your particular conditions. The above advice is to provide an idea and effect in a variety of circumstances and what can be done for your conditions.

- Protect your right to heat with wood. Careless operation may result in a loss of your rights.

MAINTENANCE SCHEDULE

DAILY

- Stir and scoop ashes in firebox, check water level.

MONTHLY

- Check door opening; check chimney, check vent cap; clean and remove ashes.

BIANNUALLY

- Clean firebox. Use chimney and remove all ashes.

- Inspect and lubricate smoke control flapper with WD-40.

- Cover chimney and clean out all ashes when not in use. DO NOT USE WASTE OIL.

- Read Owner’s Manual for complete instructions.

NOTICE

Ensure firebox draft is a minimum of .02" water column in all modes of operation.

When using the fuel oil option, for proper operation use either #1 or #2 fuel oil of the proper viscosity for the ambient temperature of the power burner. In colder temperatures #1 fuel oil may be necessary.

Section 6 - General Information

PARTS LISTING, CL 4030 DF
Section 6 - General Information

PARTS LISTING, CL 6048 DF

Door Replacement Parts

2500357
Replacement Steel Door Assembly
(includes door rope and heat shields)

1200661-011
(includes weld-on hooks)

5000148 (x5)

4238
Door Switch

4184

2500053
2500020

10508 (2)
10998
10792
10854-011
10853-011
10792
4283 (2)
3033
4278 (3)

6508
6497/6498

6808

6563

812 (.75)

4099 2000155

6508
6497

880

1085 (Fuse Holder)
6648 (Fuse)

8355

3104130 (x5)

3104131 (x5)

4050047

360

8200280
2000628
3102582
10707
10706

6509

6510

3104164-011 (x2)

6649

6509

6510

6648

6497/6498

10508
10998
10792
10854-011
10853-011
4283 (2)
3033
4278 (3)

2000950

3102582
2000628
8200280

6509

6510

3104164-011 (x2)

6649

6509

6510

6648

6497/6498

10508
10998
10792
10854-011
10853-011
4283 (2)
3033
4278 (3)

2000950

3102582
2000628
8200280

6509

6510

3104164-011 (x2)

6649

6509

6510

6648

6497/6498

10508
10998
10792
10854-011
10853-011
4283 (2)
3033
4278 (3)

2000950

3102582
2000628
8200280

6509

6510

3104164-011 (x2)

6649

6509

6510

6648

6497/6498

10508
10998
10792
10854-011
10853-011
4283 (2)
3033
4278 (3)

2000950

3102582
2000628
8200280

6509

6510

3104164-011 (x2)

6649

6509

6510

6648

6497/6498

10508
10998
10792
10854-011
10853-011
4283 (2)
3033
4278 (3)

2000950

3102582
2000628
8200280

6509

6510

3104164-011 (x2)

6649

6509

6510

6648

6497/6498

10508
10998
10792
10854-011
10853-011
4283 (2)
3033
4278 (3)

2000950

3102582
2000628
8200280

6509

6510

3104164-011 (x2)

6649

6509

6510

6648

6497/6498

10508
10998
10792
10854-011
10853-011
4283 (2)
3033
4278 (3)

2000950

3102582
2000628
8200280

6509

6510

3104164-011 (x2)

6649

6509

6510

6648

6497/6498

10508
10998
10792
10854-011
10853-011
4283 (2)
3033
4278 (3)
Door Replacement Parts

2500370
Replacement Steel Door Assembly
(includes door rope and heat shields)

1200763-011
(includes weld-on hooks)

5000148 (x6)

3104835

4238
Door Switch

2500053
1200042-005

PARTS LISTING, CL 7260

Section 6 - General Information
FURNACE MEASUREMENTS

<table>
<thead>
<tr>
<th>Model</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>Filling Opening</th>
<th>Firebox Size (l x h x w)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CL 4030</td>
<td>43"</td>
<td>70"</td>
<td>53"</td>
<td>49"</td>
<td>53"</td>
<td>66"</td>
<td>144"</td>
<td>3"</td>
<td>24"</td>
<td>47 x 47</td>
<td>102 x 76 x 66</td>
</tr>
<tr>
<td>CL 5036</td>
<td>47"</td>
<td>79"</td>
<td>63"</td>
<td>51"</td>
<td>64"</td>
<td>76"</td>
<td>151"</td>
<td>3"</td>
<td>24"</td>
<td>55 x 55</td>
<td>127 x 92 x 76</td>
</tr>
<tr>
<td>CL 6048</td>
<td>59"</td>
<td>93"</td>
<td>73"</td>
<td>65"</td>
<td>74"</td>
<td>86"</td>
<td>163"</td>
<td>3"</td>
<td>24"</td>
<td>55 x 55</td>
<td>152 x 122 x 92</td>
</tr>
<tr>
<td>CL 7260</td>
<td>70"</td>
<td>93"</td>
<td>88"</td>
<td>78"</td>
<td>89"</td>
<td>104"</td>
<td>260"</td>
<td>4"</td>
<td>10"</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Measurement includes two chimney sections.
** Measurement includes three chimney sections.
WARNING
Disconnect power before removing this panel.

AVERTISSEMENT
Coupez l'alimentation électrique avant d'enlever ce panneau.

Access Box
Conductor from Side Switch Connectors

Door Cord

WARNING

INSTRUCTIONS

Changing the Outdoor Furnace Operating Temperature with the Digital Temperature Controller

1. Press the SET button on the temperature controller. "SP" will appear in the display.
2. Press SET again. The set value will now be displayed. The original value is preset at 185 degrees F.
3. Press the UP or DOWN buttons until the desired value is reached.
4. Press SET to save this setting. "SP" will reappear.
5. The control will automatically exit the programming mode if no buttons are pressed for one minute.

NOTICE

ATTENTION! IMMEDIATE ACTION REQUIRED

Add MolyArmor 350 Corrosion Inhibitor IMMEDIATELY before filling with water.

CLASSIC and PALLETT BURNER MODELS
- CL 4030 - 1 unit
- CL 5036 - 2 units
- CL 6048 - 2 units
- CL 7260 - 4 units

Pallet Burner - 3 units

CL 7260 - 4 units

After filling the system, IMMEDIATELY heat the system water to 185°F and start the pump(s) to circulate water in the system.

Read the Owner's Manual for more information about testing the system water and submitting water samples to be certain that proper MolyArmor 350 and pH levels are achieved.

Section 6 - General Information
WATER SAMPLE INFORMATION - TITANIUM SERIES MODELS

NOTE: It is your responsibility as owner to ensure that your water sample information is accurate and that you submit your samples on a timely basis as required by the warranty for your stainless steel outdoor furnace. Failure to do so will result in a one year warranty.

WATER SAMPLE LABEL INFORMATION
Use the provided labels or include the water sample label information when mailing water samples to Central Boiler.

MAILING LABEL
Use the provided labels or send water samples to Central Boiler, Attn: Water Quality Department, 20502 160th Street, Greenbush, MN 56726.

CENTRAL BOILER, INC.
ATTN: WATER QUALITY DEPARTMENT
20502 160th Street
Greenbush, MN 56726
Central Boiler, Inc. ("Central Boiler") warrants to the original owner, except (a) parts manufactured by others and excluded from warranty coverage below; and (b) parts or items specified below as covered by a limited one year warranty, Central Boiler Classic, Classic Edge and E-Classic Titanium Series furnaces against defects in workmanship and against corrosion failure of the firebox/water jacket assembly for a period of TWENTY-FIVE (25) YEARS from the date of original retail purchase, provided that the Limited Warranty Registration Form is completed and sent to Central Boiler within seven (7) days of the original owner taking possession of the furnace and the original owner strictly complies with the instructions for maintenance and corrosion inhibitor contained in the Owner's Manual; otherwise this Limited Warranty shall be for a period of ONE (1) YEAR from the date of manufacture or one year from original retail purchase, if proof of purchase date can be provided.

If a failure of a warranty covered part occurs that is caused by a defect in workmanship or corrosion, at its option Central Boiler will (1) repair or replace (using new or refurbished replacement parts) the defective or failed part based on the date of original retail purchase at the following prorated scale:

First – Fifth year: Parts and labor will be covered at 100%

Sixth year: Parts will be covered at 70%

Seventh year: Parts will be covered at 60%

Eighth year: Parts will be covered at 50%

Ninth year: Parts will be covered at 40%

Tenth – Twentieth year: Parts will be covered at 15%

Twenty-first – Twenty-fifth: Parts will be covered at 10%

(2) exchange the furnace with a comparable model furnace that is new or which has been manufactured from new or serviceable used parts and is at least functionally equivalent to the original furnace, or (3) provide a discount off the retail purchase price of a new Central Boiler furnace of comparable model based on the prorated scale: Years 1-5 100%, years 6-7 at 50%, years 8-10 at 40%, years 11-15 at 30% and years 16-25 at 10%. A replacement furnace/part assumes the remaining warranty of the original furnace/part or ninety (90) days from the date of replacement or repair, whichever provides longer coverage. If a furnace or part is qualified for replacement under the provisions of this limited warranty, at Central Boiler’s discretion, the furnace or part may be required to be returned to Central Boiler for inspection and recycling or disposal.

Because maintaining the corrosion inhibitor at a proper level is imperative to preventing corrosion failures, to qualify for the 25 year warranty the operator must comply with the instructions in the owner's manual for maintenance and corrosion inhibitor and send a furnace water sample when the furnace is initially put into service and once each year thereafter to confirm proper maintenance and corrosion inhibitor. No warranty claim can be approved unless the furnace registration and the required water test verifications are on file at Central Boiler.

Parts Manufactured By Others. Parts that are factory-installed by Central Boiler, but are manufactured by others, may be covered by their own manufacturer's warranty and are not covered by this limited warranty, except the FireStar® combustion controller on the Classic, Classic Edge and E-Classic Titanium Series furnace is warranted against defects in workmanship for a period of two (2) years from the date of original retail purchase, provided that the Limited Warranty Registration Form is completed and sent to Central Boiler within seven (7) days of the original owner taking possession of the furnace; otherwise this limited warranty shall be for a period of ONE (1) YEAR from the date of original retail purchase. This limited warranty covers the controller part only; service calls, mileage, and labor to diagnose the problem and install a new part are not covered.

Parts Covered by a Limited One Year Warranty. The following parts are covered by a limited warranty for workmanship defects for one year: gaskets, seals, heat shields, paint, air charge tube, firebox ash pan, combustors, aquastats, actuators, heat refractory, firebrick, air channels, combustion air tubes, turbulators, chimney sections, and chimney tee. This limited warranty covers the part only; service calls, mileage, and labor to diagnose the problem and install a new part are not covered.

EXCLUSIONS AND LIMITATIONS. This Limited Warranty applies only to Central Boiler Classic, Classic Edge and E-Classic Titanium Series outdoor furnaces. This limited warranty covers only those defects or corrosion failures that arise as a result of normal use of the outdoor furnace and does not cover any other defects or problems, including those that arise as a result of: (a) improper maintenance (b) operation outside the furnace's specifications (see owner's manual), accident, abuse, misuse, misapplication, or parts that are not factory-installed; (c) service performed by anyone other than Central Boiler unless authorized by Central Boiler in writing; (d) modifications undertaken without the written permission of Central Boiler; or (e) if any Central Boiler serial number has been removed or defaced. This limited corrosion warranty will be void if the owner fails to maintain the proper amount of MolyArmor 350 Corrosion Inhibitor in the system, fails to send water samples to Central Boiler as required, or burns materials in the firebox other than natural wood. This limited warranty excludes the cost of shipping, labor to remove or reinstall the furnace, plumbing labor and/or parts and the cost of alternative heat if the furnace is out of service for repairs. Warranty excludes replacement of water, inhibitors or other additives, and parts used in the system whether or not mounted on the furnace, such as pumps, valves, and piping.

Central Boiler is not liable for damage or repairs required as a consequence of faulty installations or applications by others or any event of force majeure. Central Boiler is not liable for incidents or accidents which can be prevented by the owner or that occur from the operation of the outdoor furnace. A backup heating system should be in place to prevent damage in case of failure to refuel the outdoor furnace or in the event that mechanical failure of the outdoor furnace or system occurs. Heat retention characteristics in Outdoor Furnace promotional information should be used only as a guideline. Heat loss for all applications with all weather extremes and other heat variables must be considered when sizing an outdoor furnace for different applications.

THIS LIMITED WARRANTY AND REMEDIES SET FORTH ABOVE ARE EXCLUSIVE AND IN LIEU OF ALL OTHER WARRANTIES, REMEDIES AND CONDITIONS, WHETHER ORAL OR WRITTEN, EXPRESS OR IMPLIED. CENTRAL BOILER SPECIFICALLY DISCLAIMS ANY AND ALL IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IF CENTRAL BOILER CANNOT LAWFULLY DISCLAIM IMPLIED WARRANTIES UNDER THIS LIMITED WARRANTY, ALL SUCH WARRANTIES, INCLUDING WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE LIMITED IN DURATION TO THE DURATION OF THIS WARRANTY. No Central Boiler dealer or employee is authorized to make any modification, extension, or addition to this limited warranty. CENTRAL BOILER IS NOT RESPONSIBLE FOR DIRECT, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES RESULTING FROM ANY BREACH OF WARRANTY OR CONDITION, OR UNDER ANY OTHER LEGAL THEORY. Some states and provinces do not allow the exclusion or limitation of incidental or consequential damages or exclusions or limitations on the duration of implied warranties or conditions, so the above limitations or exclusions may not apply to you. This warranty gives you specific legal rights, and you may also have other rights that vary by state or province.

OBTAINING WARRANTY SERVICE - To obtain warranty service, contact the Central Boiler dealer from whom you purchased your furnace or contact Central Boiler by telephone (800-248-4681) or mail (20502 160th Street, Greenbush, MN 56726). Please provide the dealer’s name, original date of sale, model number and serial number in all communications. Central Boiler reserves the right to require the warranty service to be performed at a Central Boiler facility when deemed necessary by Central Boiler. All corrosion repairs will be performed at Central Boiler unless authorized by Central Boiler in writing.

Design Changes. Central Boiler reserves the right to change and improve the product design for improved performance without assuming responsibility to upgrade previously sold products.